Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
123 nhan

Tính:

\(\sqrt{10+2\sqrt{17-4\sqrt{9+4\sqrt{5}}}}\)

HT.Phong (9A5)
15 tháng 7 2023 lúc 9:53

\(\sqrt{10+2\sqrt{17-4\sqrt{9+4\sqrt{5}}}}\)

\(=\sqrt{10+2\sqrt{17-4\sqrt{2^2+2\cdot2\sqrt{5}+\left(\sqrt{5}\right)^2}}}\)

\(=\sqrt{10+2\sqrt{17-4\sqrt{\left(2+\sqrt{5}\right)^2}}}\)

\(=\sqrt{10+2\sqrt{17-4\cdot\left|2+\sqrt{5}\right|}}\)

\(=\sqrt{10+2\sqrt{17-4\cdot\left(2+\sqrt{5}\right)}}\)

\(=\sqrt{10+2\sqrt{17-8-4\sqrt{5}}}\)

\(=\sqrt{10+2\sqrt{9-4\sqrt{5}}}\)

\(=\sqrt{10+2\sqrt{2^2-2\cdot2\cdot\sqrt{5}+\left(\sqrt{5}\right)^2}}\)

\(=\sqrt{10+2\sqrt{\left(2-\sqrt{5}\right)^2}}\)

\(=\sqrt{10+2\cdot\left|2-\sqrt{5}\right|}\)

\(=\sqrt{10+2\cdot\left(-2+\sqrt{5}\right)}\)

\(=\sqrt{10+-4+2\sqrt{5}}\)

\(=\sqrt{6+2\sqrt{5}}\)

\(=\sqrt{\left(\sqrt{5}\right)^2+2\sqrt{5}\cdot1+1^2}\)

\(=\sqrt{\left(\sqrt{5}+1\right)^2}\)

\(=\left|\sqrt{5}+1\right|\)

\(=\sqrt{5}+1\)

Ngô Hải Nam
15 tháng 7 2023 lúc 9:57

\(=\sqrt{10+2\sqrt{17-4\sqrt{5+4\sqrt{5}+4}}}\)

\(=\sqrt{10+2\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}}\)

\(=\sqrt{10+2\sqrt{17-4\cdot\left|\sqrt{5}+2\right|}}\)

\(=\sqrt{10+2\sqrt{17-4\left(\sqrt{5}+2\right)}}\) (vì \(\sqrt{5}+2>0\))

\(=\sqrt{10+2\sqrt{17-4\sqrt{5}-8}}\)

\(=\sqrt{10+2\sqrt{9-4\sqrt{5}}}\\ =\sqrt{10+2\sqrt{5-4\sqrt{5}+4}}\\ =\sqrt{10+2\sqrt{\left(\sqrt{5}-2\right)^2}}\\ =\sqrt{10+2\cdot\left|\sqrt{5}-2\right|}\)

\(=\sqrt{10+2\cdot\left(\sqrt{5}-2\right)}\) (vì \(\sqrt{5}-2>0\))

\(=\sqrt{10+2\sqrt{5}-4}\\ =\sqrt{6+2\sqrt{5}}\\ =\sqrt{5+2\sqrt{5}+1}\\ =\sqrt{\left(\sqrt{5}+1\right)^2}\\ =\left|\sqrt{5}+1\right|\)

\(=\sqrt{5}+1\) (vì \(\sqrt{5}+1>0\))

 


Các câu hỏi tương tự
Tô Thị Thùy Dương
Xem chi tiết
Nhi Lê Nguyễn Bảo
Xem chi tiết
Nguyễn Trọng Kiên
Xem chi tiết
Nguyễn Thị Thu Phương
Xem chi tiết
Nguyễn Minh Phương
Xem chi tiết
Charlet
Xem chi tiết
Hỏi Làm Gì
Xem chi tiết
Phạm Thị Minh Tâm
Xem chi tiết
Nguyễn Nhã Thanh
Xem chi tiết