tìm m để pt :\(\left(m^2+1\right)x^2-2023x+\left(2m-1\right)\)có 2 nghiệm pb trái dấu
cảm ơn
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1. Tìm m để pt : \(x^2-\left(2m-3\right)x+m^2-4=0\) có 2 nghiệm pb sao cho tổng bp 2 nghiệm <17
2. Tìm m để pt \(x^4-\left(m+1\right)x^2+m^2-m+2=0\) có 3 nghiệm pb
3. Tìm m để pt \(x^2-6x+m-2=0\) có 2 nghiệm x>0
1.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta=25-12m>0\\x_1^2+x_2^2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(x_1+x_2\right)^2-2x_1x_2< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\\left(2m-3\right)^2-2\left(m^2-4\right)< 17\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< \dfrac{25}{12}\\2m^2-12m< 0\end{matrix}\right.\)
\(\Leftrightarrow0< m< \dfrac{25}{12}\)
3.
Yêu cầu bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}\Delta'=11-m>0\\x_1+x_2>0\\x_1x_2>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 11\\6>0\\m-2>0\end{matrix}\right.\)
\(\Leftrightarrow2< m< 11\)
a, cho pt : \(2x^2+\left(2m-1\right)x+m-1=0\)
TÌm hệ thức giữa 2 nghiệm x1; x2 ko phụ thuộc vào tham số m
b, cho pt: \(\left(m+2\right)x^2-2\left(m+1\right)x+m-4=0\) \(\left(m\ne-2\right)\)
tìm m để pt có 2 nghiệm trái dấu trong đó nghiệm dương có giá trị tuyệt đối lớn hơn.
b: Để phương trình có hai nghiệm trái dấu thì (m+2)(m-4)<0
=>-2<m<4
Tìm m để pt có nghiệm phân biệt trái dấu
a) \(2x^2-\left(m^2-m+1\right)x+2m^2-3m-5=0\)
b) \(\left(m^2-3m+2\right)x^2-2m^2x-5=0\)
c) \(x^2-2\left(m-1\right)+m^2-2m=0\)( nghiệm âm có giá trị tuyệt đối lớn hơn)
a, Phương trình có hai nghiệm trái dấu khi \(2\left(2m^2-3m-5\right)< 0\)
\(\Leftrightarrow\left(2m-5\right)\left(m+1\right)< 0\)
\(\Leftrightarrow-1< m< \dfrac{5}{2}\)
b, TH1: \(m^2-3m+2=0\Leftrightarrow\left[{}\begin{matrix}m=1\\m=2\end{matrix}\right.\)
Phương trình đã cho có nghiệm duy nhất
TH2: \(m^2-3m+2\ne0\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne2\end{matrix}\right.\)
Phương trình có hai nghiệm trái dấu khi \(-5\left(m^2-3m+2\right)< 0\)
\(\Leftrightarrow m^2-3m+2>0\)
\(\Leftrightarrow\left[{}\begin{matrix}m>2\\m< 1\end{matrix}\right.\)
Vậy \(m>2\) hoặc \(m< 1\)
c, Phương trình đã cho có hai nghiệm trái dấu \(x_1,x_2\) khi \(m^2-2m< 0\Leftrightarrow0< m< 2\)
Theo định lí Viet: \(x_1+x_2=2\left(m-1\right)\)
Yêu cầu bài toán thỏa mãn khi \(x_1+x_2< 0\Leftrightarrow2\left(m-1\right)< 0\Leftrightarrow m< 1\)
Vậy \(0< m< 1\)
Cho pt: \(mx^2-\left(2m+1\right)x+m+3=0\)
a) tìm m để pt trên có 2 nghiệm phân biệt ≠ 0
b) giả sử \(x_1;x_2\) là 2 nghiệm của pt trên. tìm m để:
\(\dfrac{mx_1^2+\left(2m+1\right)x_2+m+3}{m}+\dfrac{m}{mx_2^2+\left(2m+1\right)x_1+m+3}=2\)
a: \(\text{Δ}=\left(2m+1\right)^2-4m\left(m+3\right)\)
\(=4m^2+4m+1-4m^2-12m\)
\(=-8m+1\)
Để phương trình có hai nghiệm phân biệt thì Δ>0
\(\Leftrightarrow-8m+1>0\)
\(\Leftrightarrow-8m>-1\)
hay \(m< \dfrac{1}{8}\)
cho hàm số \(y=x^2-2\left|x\right|\)
tìm m để pt: \(\left|x^2-2|x|+m\right|=1\) có 2 nghiệm pb
Xét pt \(\left|x^2-2\left|x\right|+m\right|=1\Leftrightarrow\left|\left(\left|x\right|-1\right)^2+m-1\right|=1\) (1)
Đặt \(\left(\left|x\right|-1\right)^2=t\ge0\) (2)
Ta thấy:
- Với \(\left[{}\begin{matrix}t=0\\t>1\end{matrix}\right.\) \(\Rightarrow\) (2) có 2 nghiệm
- Với \(t=3\Rightarrow\) (2) có 3 nghiệm
- Với \(0< t< 1\Rightarrow\) (2) có 4 nghiệm
- Với \(t< 0\Rightarrow\) (2) vô nghiệm
Xét pt: \(\left|t+m-1\right|=1\)
\(\Leftrightarrow\left[{}\begin{matrix}t+m-1=1\\t+m-1=-1\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}t=2-m\\t=-m\end{matrix}\right.\) luôn có 2 nghiệm
\(\Rightarrow\) (1) có 2 nghiệm khi
TH1: \(\left[{}\begin{matrix}-m< 0\\2-m=0\end{matrix}\right.\) \(\Rightarrow m=2\) (TH này pt có 2 nghiệm, nhưng đó là 2 nghiệm kép)
TH2: \(\left[{}\begin{matrix}-m< 0\\2-m>1\end{matrix}\right.\) \(\Rightarrow0< m< 1\)
Cho pt: \(m^2-\left(2x+1\right)x+m+3=0\)
a). Tìm m để pt trên có 2 nghiệm phân biệt ≠ 0
b). giả xử \(x_1;x_2\) là 2 nghiệm của pt trên. Tìm m để:
\(\dfrac{mx_1^2+\left(2m+1\right)x_2+m+3}{m}+\dfrac{m}{mx_2^2+\left(2m+1\right)x_1+m+3}=2\)
cho pt: \(x^2-\left(2m-1\right)x+m\left(m-1\right)\)
tìm m để pt có nghiệm bằng 1. tìm nghiệm còn lại
giúp mk vs!
`x=1` là nghiệm pt
`=>1-(2m-1)+m(m-1)=0`
`<=>2-2m+m^2-m=0`
`<=>m^2-3m+2=0`
`<=>` $\left[ \begin{array}{l}m=1\\m=2\end{array} \right.$
`=>`$\left[ \begin{array}{l}m=1\Rightarrow x^2-(2-1)x+1(1-1)=0\\m=2\Rightarrow x^2-(4-1)x+2(2-1)=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x^2-x=0\\x^2-3x+2=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}$\left[ \begin{array}{l}x=0\\x=1\end{array} \right.$
\\$\left[ \begin{array}{l}x=1\\x=2\end{array} \right.$
\end{array} \right.$
Vậy m=1 thì pt có nghiệm x=1 và nghiệm còn lại là 0
m=2 thì pt có nghiệm x=1 và nghiệm còn lại là 2
`x=1` là nghiệm pt
`=>1-(2m-1)+m(m-1)=0`
`<=>2-2m+m^2-m=0`
`<=>m^2-3m+2=0`
`<=>` $\left[ \begin{array}{l}m=1\\m=2\end{array} \right.$
`=>`$\left[ \begin{array}{l}m=1\Rightarrow x^2-(2-1)x+1(1-1)=0\\m=2\Rightarrow x^2-(4-1)x+2(2-1)=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x^2-x=0\\x^2-3x+2=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}\left[ \begin{array}{l}x=0\\x=1\end{array} \right.\\\left[ \begin{array}{l}x=1\\x=2\end{array} \right.\end{array} \right.$
Vậy m=1 thì pt có nghiệm x=1 và nghiệm còn lại là 0
m=2 thì pt có nghiệm x=1 và nghiệm còn lại là 2
Cho phương trình \(x^2-2\left(m-1\right)x+2m-3=0\left(1\right)\)
a) Chứng minh \(\left(1\right)\) luôn có nghiệm với mọi m.
b) Tìm giá trị của m để \(\left(1\right)\) có 2 nghiệm trái dấu.
c) Tìm giá trị của m để \(\left(1\right)\) có 2 nghiệm sao cho nghiệm này gấp đôi nghiệm kia.
a: \(\text{Δ}=\left(2m-2\right)^2-4\left(2m-3\right)\)
\(=4m^2-8m+4-8m+12\)
\(=4m^2-16m+16\)
\(=\left(2m-4\right)^2>=0\)
Do đó: Phương trình luôn có nghiệm
b: Để phương trình có hai nghiệm trái dấu thì 2m-3<0
hay m<3/2
c: Để phương trình có hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia thì ta có hệ phương trình:
\(\left\{{}\begin{matrix}x_1-2x_2=0\\x_1+x_2=2m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3x_2=-2m+2\\x_1=2x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-2}{3}\\x_1=\dfrac{4m-4}{3}\end{matrix}\right.\)
Ta có: \(x_1x_2=2m-3\)
\(\Leftrightarrow2m-3=\dfrac{2m-2}{3}\cdot\dfrac{4m-4}{3}\)
\(\Leftrightarrow8\left(m-1\right)^2=9\left(2m-3\right)\)
\(\Leftrightarrow8m^2-16m+8-18m+27=0\)
\(\Leftrightarrow8m^2-34m+35=0\)
\(\text{Δ}=\left(-34\right)^2-4\cdot8\cdot35=36>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{34-6}{16}=\dfrac{28}{16}=\dfrac{7}{4}\\m_2=\dfrac{34+6}{16}=\dfrac{40}{16}=\dfrac{5}{2}\end{matrix}\right.\)
bài 9:
Cho pt x2-(m-1)x-m2+m-1=0
a)Chứng minh pt luôn có 2 nghiệm pb với ∀m
b)tìm m để \(\left|x_2\right|-\left|x_1\right|=2\)
a: Δ=(m-1)^2-4(-m^2+m-1)
=m^2-2m+1+4m^2-4m+4
=5m^2-6m+5
=5(m^2-6/5m+1)
=5(m^2-2*m*3/5+9/25+16/25)
=5(m-3/5)^2+16/5>=16/5>0 với mọi m
=>Phương trình luôn có hai nghiệm pb
b: |x2|-|x1|=2
=>x1^2+x2^2-2|x1x2|=4
=>(m-1)^2-2(-m^2+m-1)-2|-m^2+m-1|=4
=>(m-1)^2=4
=>m=3 hoặc m=-1