cho a/b = c/d . chứng minh (a + 4c ) (2b -3d) = (b +4d) (2 a-3 c) bằng t/c dãy tỉ số bằng nhau
cho a/b = c/d . chứng minh (a + 4c ) (2b -3d) = (b +4d) (2 a-3 c)
`(a+4c)(2b-3d) = 2ab +8bc -3ad - 12cd.`
`(b+4d)(2a-3c) = 2ab + 8ad - 3cb - 12cd`.
Mà do `a/b = c/d => ac = bd => dpcm`.
cho \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\). Chứng minh \(\dfrac{2a+3c}{3a+4c}=\dfrac{2b+3d}{3b+4d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{2a+3c}{3a+4c}=\dfrac{2bk+3dk}{3bk+4dk}=\dfrac{2b+3d}{3b+4d}\)
Cho b^2=ac;c^2=bd Với b,c,d Khác 0, 2b+3c khác 4d,b^3+c^3 khác d^3
CMR
(a+b-c/b+c-d)^3=(2a+3b-4c/2b+3d-4c)^3
Giải:
Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,b=ck,c=dk\)
Ta có:
\(\left(\frac{a+b-c}{b+c-d}\right)^3=\left(\frac{bk+ck-dk}{b+c-d}\right)^3=\left[\frac{k\left(b+c-d\right)}{b+c-d}\right]^3=k^3\) (1)
\(\left(\frac{2a+3b-4c}{2b+3c-4d}\right)^2=\left(\frac{2bk+3ck-4dk}{2b+3c-4d}\right)^3=\left[\frac{k\left(2b+3c-4d\right)}{2b+3c-4d}\right]^3=k^3\) (2)
Từ (1) và (2) suy ra \(\left(\frac{a+b-c}{b+c-d}\right)^3=\left(\frac{2a+3b-4c}{2b+3c-4d}\right)^3\) ( đpcm )
cho a/b=c/d chứng minh tỉ lệ thức bằng nhau
a, ( b+d ) c = ( a+c ) d
b, ( 2x - c ) ( 2b + d) = ( 2b - d ) ( 2a + c )
c , ( 3a + 5 c ) ( b - 3d ) = ( 3b + 5d ) ( a - 3c)
mn giúp mình với ạ ! mình đang cần gấp
a) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}\)
\(\Rightarrow\left(b+d\right)c=\left(a+c\right)d\)
\(\Rightarrow dpcm\)
b) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{2a}{2b}=\dfrac{c}{d}=\dfrac{2a+c}{2b+d}=\dfrac{2a-c}{2b-d}\)
\(\Rightarrow\left(2b-d\right)\left(2a+c\right)=\left(2a-c\right)\left(2b+d\right)\)
\(\Rightarrow dpcm\)
c) \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{3c}{3d}=\dfrac{3a}{3b}=\dfrac{5c}{5d}=\dfrac{3a+5c}{3b+5d}=\dfrac{a-3c}{b-3d}\)
\(\Rightarrow\left(b-3d\right)\left(b-3d\right)=\left(3b+5d\right)\left(a-3c\right)\)
\(\Rightarrow dpcm\)
Đính chính câu c
\(\Rightarrow\left(3a+5c\right)\left(b-3d\right)=\left(3b+5d\right)\left(a-3c\right)\)
Câu 1 : cho tỉ lệ thức a/b =c/d .Chứng minh : \(\dfrac{a+2b}{a-2b}\) = \(\dfrac{c+2d}{c-2d}\)
Câu 2 : Tìm x,y,z biết : (áp dụng công thức dãy tỉ số bằng nhau)
a) 2x=3y , 5y =7z và 3x+5y-7z =30.
b) \(\dfrac{x-1}{2}\)=\(\dfrac{y+3}{4}\)=\(\dfrac{z-5}{6}\)và 5z-3x-4y=50.
c) \(\dfrac{1}{2}\)x =\(\dfrac{2}{3}\)y=\(\dfrac{3}{4}\)z và x-y=15.
a) Cho tỉ lệ thức a/b=c/d Với b/d khác +-3/2 . Chứng minh:
1)2a+3c/2b+3d=2a-3c/2b-3d.
2)a^2+c^2/b^2+d^2=ac/bd
đặt a/b =c/d =k
=> a=bm , c=dm
=> 2a+3c/2b+3d =2bm+3bm/ 2b +3d = m.(2d+3d)/2d+3d =m (1)
=> 2a-3c/2d-3d=2bm-3dm /2b -3d =m.(2b-3d)/2b-3d= m (2)
Từ (1) và (2) => 2a+3c/2b+3d =2a-3c/2b-3d
câu 2 tương tự nha
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\). Chứng minh:
1) \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2) \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3) \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4) \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=bk;c=dk\)
1: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2\cdot bk+3\cdot dk}{2b+3d}=\dfrac{k\left(2b+3d\right)}{2b+3d}=k\)
\(\dfrac{2a-3c}{2b-3d}=\dfrac{2bk-3dk}{2b-3d}=\dfrac{k\left(2b-3d\right)}{2b-3d}=k\)
Do đó: \(\dfrac{2a+3c}{2b+3d}=\dfrac{2a-3c}{2b-3d}\)
2: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4\cdot bk-3b}{4\cdot dk-3d}=\dfrac{b\left(4k-3\right)}{d\left(4k-3\right)}=\dfrac{b}{d}\)
\(\dfrac{4a+3b}{4c+3d}=\dfrac{4bk+3b}{4dk+3d}=\dfrac{b\left(4k+3\right)}{d\left(4k+3\right)}=\dfrac{b}{d}\)
Do đó: \(\dfrac{4a-3b}{4c-3d}=\dfrac{4a+3b}{4c+3d}\)
3: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3bk+5b}{3bk-5b}=\dfrac{b\left(3k+5\right)}{b\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
\(\dfrac{3c+5d}{3c-5d}=\dfrac{3dk+5d}{3dk-5d}=\dfrac{d\left(3k+5\right)}{d\left(3k-5\right)}=\dfrac{3k+5}{3k-5}\)
Do đó: \(\dfrac{3a+5b}{3a-5b}=\dfrac{3c+5d}{3c-5d}\)
4: \(\dfrac{3a-7b}{b}=\dfrac{3bk-7b}{b}=\dfrac{b\left(3k-7\right)}{b}=3k-7\)
\(\dfrac{3c-7d}{d}=\dfrac{3dk-7d}{d}=\dfrac{d\left(3k-7\right)}{d}=3k-7\)
Do đó: \(\dfrac{3a-7b}{b}=\dfrac{3c-7d}{d}\)
Chứng minh rằng các tỉ lệ thức sau bằng nhau:
a) \(\frac{a-b}{a+b}=\frac{c-d}{c+d}\)
b) \(\frac{2a+3b}{3a-4b}=\frac{2c+3d}{3c-4d}\)
k có giả thuyết thì sao chứng minh
cho a,b,c,d thỏa mãn: \(\frac{2a+3c}{2b+3d}\)=\(\frac{3a-4c}{3b-4d}\). Tính \(\frac{4a^3d^3-b^3c^2}{4b^3c^3-a^3d^3}\)