Tìm GTLN \(y=-4\left(x^2-x+1\right)+3\left|2x-1\right|\)
Với \(-1< x< 1\)
Giúp mình với :
a)Tìm GTNN của A = \(\left|x^2-x+1\right|+\left|x^2-x-2\right|\)
b ) tìm GTNLN của D =\(\frac{x+2}{\left|x\right|}\)với x khác 0 và x thuộc Z
c) tìm GTLN của F=\(\frac{7x-8}{2x-3}\)với x thuộc N
d) Timf GTNN của G=\(x\left(x+1\right)+x+2\)
e) Tìm GTLN của J = \(x^4+2x^2-7\)
f) Tìm GTLN của biểu thức N = \(\left(x+2\right)^2-4x+2\)
G ) tìm GTLN của T= \(4\left(3-\left|x-1\right|\right)+\left|1-x\right|\)
Cho x, y, z dương thỏa mãn xyz=1. Tìm GTLN của \(\dfrac{1}{\sqrt{\left(x+y\right)^2+\left(x+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(y+z\right)^2+\left(y+1\right)^2+4}}+\dfrac{1}{\sqrt{\left(z+x\right)^2+\left(z+1\right)^2+4}}\)
\(P\le\sqrt{3\left(\sum\dfrac{1}{\left(x+y\right)^2+\left(x+1\right)^2+4}\right)}\le\sqrt{3\left(\sum\dfrac{1}{4xy+4x+4}\right)}\)
\(P\le\sqrt{\dfrac{3}{4}\sum\left(\dfrac{1}{xy+x+1}\right)}=\dfrac{\sqrt{3}}{2}\)
\(P_{max}=\dfrac{\sqrt{3}}{2}\) khi \(x=y=z=1\)
1. Tìm GTNN của \(y=x+\dfrac{1}{x}-5\) trên \(\left(0,+\infty\right)\)
2. Tìm GTNN của \(y=4x^2+\dfrac{1}{x}-4\) trên \(\left(0,+\infty\right)\)
3. Tìm GTLN của \(y=\dfrac{x^2+4}{x}\) trên \(\left(-\infty,0\right)\)
\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)
\(y_{min}=-3\) khi \(x=1\)
\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)
\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)
\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)
\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)
1.Cho \(r\left(x\right)=-\left(3x-7\right)^2+2\left(3x-7\right)-17\)
Tìm GTLN của biểu thức r(x).
2. So sánh : \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)với \(B=3^{32}-1\)
3. Tìm x, y biết: \(y^2+2y+4x-2^{x+1}+2=0\)
Câu 3 kiểm tra lại đề lại với , nếu đúng thì phức tạp lắm, còn sửa lại đề thì là :
\(y^2+2y+4^x-2^{x+1}+2=0\)
\(=>\left(y^2+2y+1\right)+2^{2x}-2^x.2+1=0\)
\(=>\left(y+1\right)^2+\left(\left(2^x\right)^2-2^x.2.1+1^2\right)=0\)
\(=>\left(y+1\right)^2+\left(2^x-1\right)^2=0\)
Dấu = xảy ra khi :
\(\hept{\begin{cases}y+1=0\\2^x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}}\)
CHÚC BẠN HỌC TỐT...........
1, Khai triển ra ta được:
\(r\left(x\right)=-\left(9x^2-42x+49\right)+6x-14-17\)
\(=-9x^2+42x-49+6x-14-17\)
\(=-9x^2+48x-80\)
\(=-9x^2+48x-64-16\)
\(=-\left(\left(3x\right)^2-3x.2.8+8^2\right)-16\)
\(=-\left(3x+8\right)^2-16\)
\(Do-\left(3x+8\right)^2\le0\)
\(=>-\left(3x+8\right)^2-16\le-16\)
Dấu bằng xảy ra khi \(3x+8=0=>x=-\frac{8}{3}\)
Vậy giá trị nhỏ nhất là -16 tại \(x=-\frac{8}{3}\)
1.Tìm GTNN
a.\(x^2+y^2+z^2-2x+4y-6z+2016\)
b.\(2x^2+2xy+y^2-2x-2y+2\)
2.Tìm GTLN
a.\(_{-8x^2+17x+21}\)
b.\(-\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+15\)
CÁC BẠN LÀM ƠN GIÚP MÌNH VỚI NHÉ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Cho biểu thức:
B=\(3xy^2\left(x+1\right)-x^2y\left(3y-1\right)-xy\left(3y+x\right)+2x\left(\cdot1-x\right)+2y\left(1-y\right)-2\left(x+y-2016\right)\)\
a) Rút gọn B
b) Tìm cặp số (x;y) để B đạt GTLN và tìm GTLN đó
tìm khoảng đồng biến nghịch biến
a) \(y=\left(x^2-1\right)^2\)
b) \(y=\left(3x+4\right)^3\)
c) \(y=\left(x+3\right)^2\left(x-1\right)\)
d) \(y=\left(2x+2\right)\left(x^3-1\right)\)
a: \(y=\left(x^2-1\right)^2\)
=>\(y'=2\left(x^2-1\right)'\left(x^2-1\right)\)
\(=4x\left(x^2-1\right)\)
Đặt y'>0
=>\(x\left(x^2-1\right)>0\)
TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)
=>\(x>1\)
TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 0\\-1< x< 1\end{matrix}\right.\Leftrightarrow-1< x< 0\)
Đặt y'<0
=>\(x\left(x^2-1\right)< 0\)
TH1: \(\left\{{}\begin{matrix}x>0\\x^2-1< 0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x>0\\x^2< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x>0\\-1< x< 1\end{matrix}\right.\)
=>0<x<1
TH2: \(\left\{{}\begin{matrix}x< 0\\x^2-1>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x< 0\\x^2>1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x< 0\\\left[{}\begin{matrix}x>1\\x< -1\end{matrix}\right.\end{matrix}\right.\)
=>x<-1
Vậy: Hàm số đồng biến trên các khoảng \(\left(1;+\infty\right);\left(-1;0\right)\)
Hàm số nghịch biến trên các khoảng (0;1) và \(\left(-\infty;-1\right)\)
b: \(y=\left(3x+4\right)^3\)
=>\(y'=3\left(3x+4\right)'\left(3x+4\right)^2\)
\(\Leftrightarrow y'=9\left(3x+4\right)^2>=0\forall x\)
=>Hàm số luôn đồng biến trên R
c: \(y=\left(x+3\right)^2\left(x-1\right)\)
=>\(y=\left(x^2+6x+9\right)\left(x-1\right)\)
=>\(y'=\left(x^2+6x+9\right)'\left(x-1\right)+\left(x^2+6x+9\right)\left(x-1\right)'\)
=>\(y'=\left(2x+6\right)\left(x-1\right)+x^2+6x+9\)
=>\(y'=2x^2-2x+6x-6+x^2+6x+9\)
=>\(y'=3x^2-2x+3\)
\(\Leftrightarrow y'=3\left(x^2-\dfrac{2}{3}x+1\right)\)
=>\(y'=3\left(x^2-2\cdot x\cdot\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{8}{9}\right)\)
=>\(y'=3\left(x-\dfrac{1}{3}\right)^2+\dfrac{8}{3}>=\dfrac{8}{3}>0\forall x\)
=>Hàm số luôn đồng biến trên R
d: \(y=\left(2x+2\right)\left(x^3-1\right)\)
=>\(y'=\left(2x+2\right)'\left(x^3-1\right)+\left(2x+2\right)\left(x^3-1\right)'\)
\(=2\left(x^3-1\right)+3x^2\left(2x+2\right)\)
\(=2x^3-2+6x^3+6x^2\)
\(=8x^3+6x^2-2\)
Đặt y'>0
=>\(8x^3+6x^2-2>0\)
=>\(x>0,46\)
Đặt y'<0
=>\(8x^3+6x^2-2< 0\)
=>\(x< 0,46\)
Vậy: Hàm số đồng biến trên khoảng tầm \(\left(0,46;+\infty\right)\)
Hàm số nghịch biến trên khoảng tầm \(\left(-\infty;0,46\right)\)
Tìm GTLN hoặc GTNN
\(C=\left|2x-\dfrac{3}{5}\right|+1,\left(3\right)\)
\(D=\left|x-3\right|+\left|x+2\right|\)
C=|2x-3/5|+4/3>=4/3
Dấu = xảy ra khi x=3/10
D=|x-3|+|-x-2|>=|x-3-x-2|=5
Dấu = xảy ra khi -2<=x<=3
Tìm x:
a) 2x(x-5)-x(2x+3)=26
b) \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\frac{5}{2}\)
c) \(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)
a. \(2x\left(x-5\right)-x\left(2x+3\right)=26\Rightarrow2x^2-10x-2x^2-3x=26\)
\(\Rightarrow-13x=26\Rightarrow x=-2\)
b. \(\left(3y^2-y+1\right)\left(y-1\right)+y^2\left(4-3y\right)=\frac{5}{2}\)
\(\Rightarrow3y^3-3y^2-y^2+y+y-1+4y^2-3y^3=\frac{5}{2}\)\(\Rightarrow2y=\frac{7}{2}\Rightarrow y=\frac{7}{4}\)
c. \(2x^2+3\left(x+1\right)\left(x-1\right)=5x^2+5x\Rightarrow5x^2-3=5x^2+5x\)
\(\Rightarrow x=-\frac{3}{5}\)