Chứng tỏ đa thức x2 + x +3/4 không có nghiệm
Chứng tỏ đa thức f(x)=x2-x+1 không có nghiệm.
Ta có:
x2-x+1=x2-\(\dfrac{1}{2}x+\dfrac{1}{2}x\)+\(\dfrac{1}{4}+\dfrac{3}{4}\)
=\(x\left(x-\dfrac{1}{2}\right)+\dfrac{1}{2}\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\left(x-\dfrac{1}{2}\right)+\left(x+\dfrac{1}{2}\right)+\dfrac{3}{4}\)
=\(\dfrac{3}{4}\)
Vậy f(x)≥\(\dfrac{3}{4}\)∀ x
=>f(x) vô nghiệm
\(x^2-x+1=x^2-2.x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Ta có: \(\left(x+\dfrac{1}{2}\right)^2\ge0\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
\(\Rightarrow\)Đa thức vô nghiệm
\(x^2-x+1\)
= \(x^2-0,5\cdot x-0,5\cdot x+1\)
= \(x\left(x-0,5\right)-0,5\left(x-0,5\right)+0,75\)
=\(\left(x-0,5\right)^2+0,75\)
vì (x-0,5)^2 \(\ge\) 0 với mọi x
=> \(\left(x-0,5\right)^2+0,75>0\)
=> f vô nghiệm
Cho đa thức P(x)= x2 - 6x + 12. Chứng tỏ rằng đa thức trên không có nghiệm
\(x^2-6x+12\)
\(=x^2-3x-3x+9+3\)
\(=\left(x^2-3x\right)+\left(-3x+9\right)+3\)
\(=x\left(x-3\right)-3\left(x-3\right)+3\)
\(=\left(x-3\right)\left(x-3\right)+3\)
\(=\left(x-3\right)^2+3\)
Ta có: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3>0\)
Vậy \(P\left(x\right)=x^2-6x+12\) không có nghiệm
Cho đa thức P x x2 6x 12. Chứng tỏ rằng đa thức trên không có nghiệm
chứng tỏ đa thức sau không có nghiệm :
a, x2 + 4
b, 10x2 + 3
c, x - 12 +7
d, x2 + x - 12
a) \(x^2+4\)
Ta có: \(x^2\ge0\) với mọi x
=> \(x^2+4\ge4>0\) với mọi x.
=> Pt vô nghiệm
b) \(10x^2+3\)
Ta có: \(x^2\ge0\) với mọi x
=> \(10x^2\ge0\) với mọi x
=> \(10x^2+3\ge3>0\) với mọi x.
=> Pt vô nghiệm.
c) Bài này đề sai nhé.
d) Bài này đề cũng sai nốt:v
a, Vì x2>=0 Suy ra x2+4 sẽ lớn hơn hoặc bàng 4
Suy ra A vô ngjieemj
b, Vì x2 lớn hơn howacj bằng 0
Suy ra 10x2 lớn hơn howacj bằng 0
Suy ra 10x2+3 lớn hơn hoặc bằng 3
Suy ra vô nghiệm
a) Vì \(x^2+4\ge4>0\forall x\) nên đa thức \(x^2+4\) không có nghiệm
b) Vì \(10x^2+3\ge3>0\forall x\) nên đa thức \(10x^2+3\) không có nghiệm
\(x^2+2x-8=x^2+2x+1-9\)
mà : \(x^2+2x+1=x^2+x+x+1=x\left(x+1\right)+\left(x+1\right)=\left(x+1\right)^2\)
\(=\left(x+1\right)^2-9=\left(x+1-3\right)\left(x+1+3\right)=\left(x-2\right)\left(x+4\right)\)
giả sử đa thức trên có nghiệm khi
Đặt \(\left(x-2\right)\left(x+4\right)=0\Leftrightarrow x=-4;x=2\)
Vậy giả sử là đúng hay ko xảy ra đpcm ( đa thức trên ko có nghiệm )
chứng tỏ rằng đa thức sau không có nghiệm: A(x) = x2 - 4x 7
Tìm nghiệm của đa thức sau: P (x) = x4 x3 x 1
Cho A(x) = 0, có:
x2 - 4x = 0
=> x (x - 4) = 0
=> x = 0 hay x - 4 = 0
=> x = 0 hay x = 4
Vậy: x = 0; x = 4 là nghiệm của đa thức A(x)
Cho hai đa thức
A ( x ) = x 5 + x 2 + 5 x + 6 - x 5 - 3 x - 5 , B ( x ) = x 4 + 2 x 2 - 3 x - 3 - x 4 - x 2 + 3 x + 4
c. Chứng tỏ rằng x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x)
c. Thay x = -1 vào A(x) và B(x) ta có:
A(-1) = 0, B(-1) = 2
Vậy x = -1 là nghiệm của A(x) nhưng không là nghiệm của B(x) (1 điểm)
b) Cho đa thức f(x) = x2 - 5x - 35. Chứng tỏ x = -5 là nghiệm của đa thức f(x) và
x = 5 không là nghiệm của đa thức f(x).
Cái nào cũng không phải là nghiệm hết ạ;-;
Cho hai đa thức:
P x = x 5 - 3 x 2 + 7 x 4 - 9 x 3 + x 2 - 1 4 x
Q x = 5 x 4 - x 5 + x 2 - 2 x 3 + 3 x 2 - 1 4
Chứng tỏ rằng x = 0 là nghiệm của đa thức P(x) nhưng không phải là nghiệm của đa thức Q(x)