JUM EM VS LÀM ƠN EM CẢM ƠN AK
Cho Parabol (P): y=x^2 và đường thẳng (d): (m+2)x-m+6. Tìm m để đường thẳng (d) cắt (p) tại hai điểm phân biệt có hoành độ dương
2. Trong mặt phẳng tọa độ Oxy cho Parabol (P): y=X’ và đường thẳng (d):
y=3x+m² -1
a) Tìm m để đường thẳng (d) đi qua điểm A(-1: 5).
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x,,, thỏa
mãn |x|+2|x|=3.
cho Parabol (P) y=x2 và đường thẳng (d) y=2x+m-6 .Tìm m để đường thẳng (d) cắt Parabol (P) tại hai điểm có hoành độ dương
Cho parabol (P): y = 1/2𝑥^2 và đường thẳng (d): y = x − m + 3.
Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ 𝑥1,𝑥2 sao cho 𝑥2 = 3𝑥1 .
Phương trình hoành độ giao điểm của (P) và (d) là:
\(\dfrac{1}{2}x^2=x-m+3\)
\(\Leftrightarrow\dfrac{1}{2}x^2-x+m-3=0\)
\(\Delta=\left(-1\right)^2-4\cdot\dfrac{1}{2}\cdot\left(m-3\right)\)
\(=1-2\left(m-3\right)\)
\(=1-2m+6\)
=-2m+7
Để phương trình có hai nghiệm phân biệt thì \(\Delta>0\)
\(\Leftrightarrow-2m+7>0\)
\(\Leftrightarrow-2m>-7\)
hay \(m< \dfrac{7}{2}\)
Áp dụng hệ thức Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-b}{a}=\dfrac{-\left(-1\right)}{\dfrac{1}{2}}=\dfrac{1}{\dfrac{1}{2}}=2\\x_1x_2=\dfrac{c}{a}=\dfrac{m-3}{\dfrac{1}{2}}=2m-6\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\\x_2=3x_1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4x_1=2\\x_2=3x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=\dfrac{1}{2}\\x_2=3\cdot\dfrac{1}{2}=\dfrac{3}{2}\end{matrix}\right.\)
Ta có: \(x_1x_2=2m-6\)
\(\Leftrightarrow2m-6=\dfrac{1}{2}\cdot\dfrac{3}{2}=\dfrac{3}{4}\)
\(\Leftrightarrow2m=\dfrac{27}{4}\)
hay \(m=\dfrac{27}{8}\)(loại)
Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d): y=(m+2)x-m+3 và parabol (P): y=x2
a) Tìm tọa độ giao điểm của (P) và (d) khi m=3
b) Tìm m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có hoành độ x21 + x22+ x1x2≤5
a. Em tự giải
b.
Phương trình hoành độ giao điểm (d) và (P):
\(x^2=\left(m+2\right)x-m+3\Leftrightarrow x^2-\left(m+2\right)x+m-3=0\)
\(\Delta=\left(m+2\right)^2-4\left(m-3\right)=m^2+16>0;\forall m\)
(d) cắt (P) tại 2 điểm phân biệt với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=m+2\\x_1x_2=m-3\end{matrix}\right.\)
\(x_1^2+x_2^2+x_1x_2\le5\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2\le5\)
\(\Leftrightarrow\left(m+2\right)^2-\left(m-3\right)\le5\)
\(\Leftrightarrow m^2+3m+2\le0\)
\(\Leftrightarrow\left(m+1\right)\left(m+2\right)\le0\)
\(\Rightarrow-2\le m\le-1\)
a: khi m=3 thì (d): y=5x
PTHĐGĐ là:
x^2=5x
=>x=0 hoặc x=5
=>y=0 hoặc y=25
b:
PTHĐGĐ là:
x^2-(m+2)x+m+3=0
Δ=(m+2)^2-4(m+3)
=m^2+4m+4-4m-12=m^2-8
Để (d) cắt (P) tại 2 điểm pb thì m^2-8>0
=>m>2 căn 2 hoặc m<-2 căn 2
x1^2+x2^2+x1x2<=5
=>(x1+x2)^2-x1x2<=5
=>(m+2)^2-m-3<=5
=>m^2+4m+4-m-3-5<=0
=>m^2+3m-4<=0
=>(m+4)(m-1)<=0
=>-4<=m<=1
cho đường thẳng (d):y=-mx+m+2 và parabol (p):y=x^2 a,Tìm tọa độ giao điểm của (d)và(p) khi m=2 b, Tìm các giá trị của m để đường thẳng (d) cắt parabol (p) tại hai điểm phân biệt có hoành độ x1;x2 sao cho x1^2+x2^2=7
a: PTHĐGĐ là:
x^2+mx-m-2=0(1)
Khi m=2 thì (1) sẽ là
x^2+2x-2-2=0
=>x^2+2x-4=0
=>\(\left[{}\begin{matrix}x=-1+\sqrt{5}\\x=-1-\sqrt{5}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}y=6-2\sqrt{5}\\y=6+2\sqrt{5}\end{matrix}\right.\)
b: Δ=m^2-4(-m-2)
=m^2+4m+8
=(m+2)^2+4>0 với mọi x
=>(d) luôn cắt (P) tại hai điểm phân biệtx
x1^2+x2^2=7
=>(x1+x2)^2-2x1x2=7
=>(-m)^2-2(-m-2)=7
=>m^2+2m+4-7=0
=>m^2+2m-3=0
=>m=-3 hoặc m=1
Cho phương trình d: y = (m + 1)x - m ( m là tham số) và Parabol (P): y = 1/2 x2
1) Tìm m để đường thẳng d cắt trục hoành tại điểm có hoành độ bằng 2.
2) Tìm m để đường thẳng d cắt (P) tại 2 điểm phân biệt có hoành độ x1, x2 thỏa mãn căn x1 + căn x2 = căn 2
Trong mặt phẳng toạ độ Oxy, cho parabol (P): y = x^2 và đường thẳng d: y=2x+|m|+ 1 ( m là tham số ). a) Chứng minh đường thẳng ở luôn cắt (P) tại 2 điểm phân biệt. b) Tìm m để đường thẳng d cắt (P) tại 2 điểm phân biệt có hoành độ x1 x2
a: PTHĐGĐ là:
x^2-2x-|m|-1=0
a*c=-|m|-1<0
=>(d)luôn cắt (P) tại hai điểm phân biệt
b: Bạn bổ sung lại đề đi bạn
trong mặt phẳng tọa độ Oxy cho đường thẳng(d);y=mx.3 tham số m và parabol y=x mũ hai
a, tìm m để đường thẳng (d) đi qua điểm A(1;0)
b, tìm m để đường thẳng (d)cắt parabol tại hai điểm phân biệt có hoành độ lần lượt là x1 và x hai thỏa mãm /x1 - x hai/ bằng hai
a: y=mx+3
Thay x=1 và y=0 vào (d), ta được:
m+3=0
=>m=-3
b: PTHĐGĐ là:
x^2-mx-3=0
Vì a*c=-3<0
nên (P) luôn cắt (d) tại hai điểm phân biệt
|x1-x2|=2
=>\(\sqrt{\left(x_1-x_2\right)^2}=2\)
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=2\)
=>\(\sqrt{m^2-4\left(-3\right)}=2\)
=>m^2+12=4
=>m^2=-8(loại)
=>KO có m thỏa mãn đề bài
cho đường thẳng (d) y=6x-m+3 (m là tham số) và parabol (p) y=x^2 tìm giá trị của m để đường thẳng (d) cắt parabol (p) tại hai điểm phân biệt có hoành độ x1 x2 thỏa mãn (x1-1)(x2^2-5x2+m-4)=2
PTHĐGĐ là;
x^2-6x+m-3=0
Δ=(-6)^2-4(m-3)=36-4m+12=-4m+48
Để PT có hai nghiệm phân biệt thì -4m+48>0
=>m<12
(x1-1)(x2^2-x2(x1+x2-1)+x1x2-1)=2
=>(x1-1)(-x1x2+x2+x1x2-1)=2
=>x1x2-(x1+x2)+1=2
=>m-3-6+1=2
=>m-8=2
=>m=10