viết biểu thức(x+y+4)(x+y-4) dưới dạng hiệu 2 bình phương
Bài 6 : viết các biểu thức dưới dạng bình phương của một tổng hoặc hiệu
a. x2 + 4x + 4
b. 4x2 - 4x + 1
c . x2 - x + 1/4
d . 4(x+y)2 - 4(x+y) + 1
a) \(x^2+4x+4\)
\(=x^2+2\cdot2\cdot x+2^2\)
\(=\left(x+2\right)^2\)
b) \(4x^2-4x+1\)
\(=\left(2x\right)^2-2\cdot2x\cdot1+1^2\)
\(=\left(2x-1\right)^2\)
c) \(x^2-x+\dfrac{1}{4}\)
\(=x^2-2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2\)
\(=\left(x-\dfrac{1}{2}\right)^2\)
d) \(4\left(x+y\right)^2-4\left(x+y\right)+1\)
\(=\left[2\left(x+y\right)\right]^2-2\cdot2\left(x+y\right)\cdot1+1^2\)
\(=\left[2\left(x+y\right)-1\right]^2\)
\(=\left(2x+2y-1\right)^2\)
BT1:Viết mỗi biểu thức sau dưới dạng hiệu 2 bình phương
a) (x+y+4)(x+y-4)
b) (x-y+6)(x+y-6)
BT2: Rút gọn biểu thức sau
a) x2(x+4)(x-4)-(x2+1)(x2-1)
1. a) ... \(=\left(x+y\right)^2-4^2\)
b) ... \(=x^2-\left(y-6\right)^2\)
2. a) ...\(=x^2\left(x^2-16\right)-\left(x^4-1\right)=x^4-16x^2-x^4+1=\left(1-4x\right)\left(1+4x\right)\)
1. Viết mỗi biểu thức sau về dạng tổng hoặc hiệu hai bình phương:
a) z2 - 6z + 5 - t2 - 4t
b) x2 - 2xy + 2y2 + 2y + 1
c) 4x2 - 12x - y2 + 2y + 8
2. Viết mỗi biểu thức sau dưới dạng hiệu hai bình phương:
a) (x + y + 4)(x + y - 4)
b) (x - y + 6)(x + y - 6)
c) (y + 2z - 3)(y - 2z - 3)
d) (x + 2y + 3z)(2y + 3z - x)
1a/ z2 - 6z + 5 - t2 - 4t = z2 - 2 . 3z + 32 - 4 - t2 - 4t = (z2 - 2 . 3z + 32) - (22 + 2 . 2t + t2) = (z - 3)2 - (2 + t)2
b/ x2 - 2xy + 2y2 + 2y2 + 1 = x2 - 2xy + y2 + y2 + 2y + 1 = (x2 - 2xy + y2) + (y2 + 2y + 1) = (x - y)2 + (y + 1)2
c/ 4x2 - 12x - y2 + 2y + 8 = (2x)2 - 12x - y2 + 2y + 32 - 1 = [ (2x)2 - 2 . 3 . 2x + 32 ] - (y2 - 2y + 1) = (2x - 3)2 - (y - 1)2
2a/ (x + y + 4)(x + y - 4) = x2 + xy - 4x + xy + y2 - 4y + 4x + 4y + 16 = x2 + (xy + xy) + (-4x + 4x) + (-4y + 4y) + y2 + 16
= x2 + 2xy + y2 + 42 = (x + y)2 + 42
b/ (x - y + 6)(x + y - 6) = x2 + xy - 6x - xy - y2 + 6y + 6x + 6y - 36 = x2 + (xy - xy) + (-6x + 6x) + (6y + 6y) - y2 - 36
= x2 - y2 + 12y - 62 = x2 - (y2 - 12y + 62) = x2 - (y2 - 2 . 6y + 62) = x2 - (y - 6)2
c/ (y + 2z - 3)(y - 2z - 3) = y2 -2yz - 3y + 2yz - 4z2 - 6z - 3y + 6z + 9 = y2 + (-2yz + 2yz) + (-3y - 3y) + (-6z + 6z) - 4z2 + 9
= y2 - 6y - 4z2 + 9 = (y2 - 6y + 9) - 4z2 = (y - 3)2 - (2z)2
d/ (x + 2y + 3z)(2y + 3z - x) = 2xy + 3xz - x2 + 4y2 + 6yz - 2xy + 6yz + 9z2 - 3xz = (2xy - 2xy) + (3xz - 3xz) - x2 + (6yz + 6yz) + 9z2 + 4y2
= -x2 + 4y2 + 12yz + 9z2 = (4y2 + 12yz + 9z2) - x2 = [ (2y)2 + 2 . 2 . 3yz + (3z)2 ] - x2 = (2y + 3z)2 - x2
:v dễ mà có trong nâng cao mới hc qua :3
a, x2+10x+26+y2+2y
=(x2+2.x.5+52)+(12+2.1.y+y2)
=(x+5)2+(y+1)2
b, x2−2xy+2y2+2y+1
=x2−2xy+y2+y2+2y+1
=(x2−2.x.y+y2)+(y2+2.y.1+12)
=(x−y)2+(y+1)2
c,z2−6z+5−t2−4t
=−(t2+4t−z2+6z−5)
=−(t2+2.t.2+22−z2+2.z.3−32)
=−((t2+2.t.2+22)−(z2−2.z.3+32))
=−((t+2)2−(z−3)2)
=(z−3)2−(t+2)2
Viết mỗi biểu thức sau dưới dạng bình phương của một tổng, một hiệu hoặc hiệu hai bình phương:
a) 25x2-5xy+1/4y2
b) 9x2 + 12x + 4
c) x2 – 6x + 5 – y2 – 4y
d) (2x – y)2 + 4.(x + y)2 – 4.(2x – y).(x + y)
a, \(25x^2+5xy+\frac{1}{4}y^2=\left(5x\right)^2+2.5x.\frac{1}{2}y+\left(\frac{1}{2}y\right)^2\)
\(=\left(5x+\frac{1}{2}y\right)^2\)
b, \(9x^2+12x+4=\left(3x\right)^2+2.3x.2+2^2=\left(3x+2\right)^2\)
c, \(x^2-6x+5-y^2-4y=\left(x^2-6x+9\right)-\left(y^2+4y+4\right)\)
\(=\left(x-3\right)^2-\left(y+2\right)^2=\left(x-y-5\right)\left(x+y-1\right)\)
d, \(\left(2x-y\right)^2+4\left(x+y\right)^2-4\left(2x-y\right)\left(x+y\right)\)
\(=\left(2x-y\right)^2-2\left(2x-y\right)\left(2x+2y\right)+\left(2x+2y\right)^2\)
\(=\left(2x-y+2x+2y\right)^2=\left(4x+y\right)^2\)
viết biểu thức dưới đây dưới dạng bình phương 1 tổng
2xy^2 + x^2 . y ^ 4 + 1
Bài 2: Viết các biểu thức sau dưới dạng bình phương của một tổng, một hiệu hoặc lập phương của một tổng, một hiệu
1, x\(^2\)+2xy+y\(^2\)
2, 4x\(^2\)+12x+9
3, x\(^2\)+5x+\(\dfrac{25}{4}\)
4, 16x\(^2\)-8x+1
5, x\(^2\)+x+\(\dfrac{1}{4}\)
6, x\(^2\)-3x+\(\dfrac{9}{4}\)
7, x\(^3\)+3x\(^2\)+3x+1
8,(\(\dfrac{x}{4}\))\(^2\)+x+1
9, 27y\(^3\)-9y\(^2\)+y-\(\dfrac{1}{27}\)
10, 8x\(^3\)+12x\(^2\)y+6xy\(^2\)+y\(^3\)
1, \(x^2+2xy+y^2=\left(x+y\right)^2\)
2, \(4x^2+12x+9=\left(2x\right)^2+2\cdot3\cdot2x+3^2=\left(2x+3\right)^2\)
3, \(x^2+5x+\dfrac{25}{4}=x^2+2\cdot\dfrac{5}{2}\cdot x+\left(\dfrac{5}{2}\right)^2=\left(x+\dfrac{5}{2}\right)^2\)
4, \(16x^2-8x+1=\left(4x\right)^2-2\cdot4x\cdot1+1^2=\left(4x-1\right)^2\)
5, \(x^2+x+\dfrac{1}{4}=x^2+2\cdot\dfrac{1}{2}\cdot x+\left(\dfrac{1}{2}\right)^2=\left(x+\dfrac{1}{2}\right)^2\)
1: =(x+y)^2
2: =(2x+3)^2
3: =(x+5/2)^2
4: =(4x-1)^2
5: =(x+1/2)^2
6: =(x-3/2)^2
7: =(x+1)^3
8: =(1/2x+1)^2
9: =(3y-1/3)^3
10: =(2x+y)^3
6, \(x^2-3x+\dfrac{9}{4}=x^2-2\cdot\dfrac{3}{2}+\left(\dfrac{3}{2}\right)^2=\left(x-\dfrac{3}{2}\right)^2\)
7, \(x^3+3x^2+3x+1=x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=\left(x+1\right)^3\)
8, \(\dfrac{x^2}{4}+x+1=\left(\dfrac{x}{2}\right)^2+2\cdot\dfrac{x}{2}\cdot1+1^2=\left(\dfrac{x}{2}+1\right)^2\)
9, \(27y^3-9y^2+y-\dfrac{1}{27}=\left(3y\right)^3-3\cdot\left(3y\right)^2\cdot\dfrac{1}{3}+3\cdot3y\cdot\left(\dfrac{1}{3}\right)^2-\left(\dfrac{1}{3}\right)^3=\left(3y-\dfrac{1}{3}\right)^3\)
10, \(8x^3+12x^2y+6xy^2+y^3=\left(2x\right)^3+3\cdot\left(2x\right)^2\cdot y+3\cdot2x\cdot y^2+y^3=\left(2x+y\right)^3\)
Đề: Viết các biểu thức dưới dạng bình phương của một tổng hay một hiệu
a) x^2+y^2+2x+2y+2(x+1)(y+1)+2
b) x^2-2x(y+2)+y^2+4y+4
C) x^2+2x(y+1)+y^2+2y+1
Bài 1;Viết các biểu thức sau dưới dạng bình phương của 1 tổng hay hiệu :
a : (x+3)(x+4)(x+5)(x+6)+1
b : x2+y2+2x+2y+2(x+1)(y+1)+2
câu a : (x^2+9x+18)(x^2+9x+20)+1 đặt x^2 + 9x +18 = a thay vào là ra
câu b ) x^2 + 2x +1 +y^2 + 2y + 1 +2(x+1)(y+1) = (x+1)^2 + (y+1)^2 + 2(x+1)(y+1) vậy là ra rùi hem
Câu a) (x+3)(x+4)(x+5)(x+6)+1
Đây là một đề toán có thể nói là khó ! Nhưng tôi mới học nên tôi sẽ chỉ cho:
= (x2 +6x+3x+18)(x2 +5x+4x+20)+1 ( Bạn biết sao ra như vầy hông, thật ra là thầy mình chỉ là nhân (x+3) với (x+6), và (x+4) với (x+5)đó)
=(x2 +9x+18) ( (x2 +9x +18)+2)+1 ( Chỗ có hai dấu ngoặc tròn là tại tôi không biết viết ngoặc vuông nên xin lỗi nha)
(Chỗ này thì mình thực hiện nhân đơn thức với đa thức ?A(B+C)=AB+AC giống phân phối á, mà A của của mình là nguyên một cụm (x2 +9x+18) luôn, trong toán thì bạn phải biết chuyển đổi và nhanh nhạy , nhớ nhé!)
= (x2+9x+18)2 +2(x2+9x+18) +12
=(x2+9x+18+1)2 (Vậy là có dạng bình phương của một tổng rồi đó!)
Bạn thấy đúng chưa? Mình cũng mới hiểu thôi, có gì bạn giúp đỡ mình một số câu khác khi mình thắc mắc nha! Cảm ơn bạn trước nha!
viết mỗi biểu thức sau dưới dạng hiệu hai bình phương:
a) (x+y+4)(x+y-4)
b) (y+2z-3)(y-2z-3)
c) (x-y-6)(x+y-6)
d) (x+2y+3z)(2y+3z-x)
a, \(\left(x+y+4\right)\left(x+y-4\right)=\left(x+y\right)^2-4^2\)
b, \(\left(y+2z-3\right)\left(y-2z-3\right)=\left(y-3+2z\right)\left(y-3-2z\right)=\left(y-3\right)^2-\left(2z\right)^2\)
c, \(\left(x-y-6\right)\left(x+y-6\right)=\left(x-6-y\right)\left(x-6+y\right)=\left(x-6\right)^2-y^2\)
d, \(\left(x+2y+3z\right)\left(2y+3z-x\right)=\left(2y+3z+x\right)\left(2y+3z-x\right)=\left(2y+3z\right)^2-x^2\)