tính giá trị biểu thức:
A(x)=x^1+x^3+x^5+....+x^99 tại x=1
Tính giá trị biểu thức:
a, \(x\left(3y-1\right)\) tại \(x^2=4\) ; \(y=5\)
b, \(\left(x-3\right)\left(y-4\right)\) tại \(x=5\); \(y^2=1\)
ta có :
`x^2 = 4`
`=> x = 2 ;-2`
TH1 :
thay `x=2 ; y = 5` ta có :
`2(3.5 -1) = 2.14 = 28`
TH2 :
thay `x= -2 , y = 5` ta có:
`(-2)(3.5-1) = (-2).14 = -28`
`b)`
ta có : `y^2 =1 `
`=> y = 1 ; -1;`
TH1:
thay `x=5 ; y=1` vào ta có:
`(5-3)(1-4)`
`=2.(-3)`
`=-6`
TH2:
thay `x = 5 ; y = -1` vào ta có :
`(5-3)(-1-4) `
`= 2 . (-5)`
`= -10`
a. \(x^2=4\\ \Leftrightarrow x=\sqrt{4}=2\)
Thay \(x=2;y=5\) vào ta được:
\(2\left(3\cdot5-1\right)\)
\(30-2=28\)
b. \(y^2=1\\ \Leftrightarrow y=\sqrt{1}=1\)
Thay \(x=5;y=1\) vào ta được:
\(\left(5-3\right)\left(1-4\right)\)
\(1\cdot\left(-3\right)=-3\)
Bài tập 5: Tính giá trị của biểu thức:
a) P(x) = ax^2 + bx +c tại x = 1; x =-1.
b) x^2 + x^ + x^6 +... +x^100 tại x = -1.
a.Thế \(x=1\) vào P ta được:
\(P\left(1\right)=a.1^2+b.1+c=a+b+c\)
Thế \(x=-1\) vào P ta được:
\(P\left(-1\right)=a.\left(-1\right)^2+b.\left(-1\right)+c=a-b+c\)
b.\(x^2+x^4+x^6+...+x^{100}\)
Thế \(x=-1\) ta được:
\(\left(-1\right)^2+\left(-1\right)^4+\left(-1\right)^6+...+\left(-1\right)^{100}\)
\(=1+1+1+...+1=50\)
Cho 2 biểu thức:
A= \(\dfrac{x+2}{x+5}\)+ \(\dfrac{-5x-1}{x^2+6x+5}\)- \(\dfrac{1}{1+x}\) và B= \(\dfrac{-10}{x-4}\) với x ≠-5, x ≠-1, x≠ 4
a) Tính giá trị của biểu thức B tại x= 2
b) Rút gọn biểu thức A
c) Tìm giá trị nguyên của x để P= A.B đạt giá trị nguyên
`a)` Thay `x=2` vào `B` có: `B=[-10]/[2-4]=5`
`b)` Với `x ne -1;x ne -5` có:
`A=[(x+2)(x+1)-5x-1-(x+5)]/[(x+1)(x+5)]`
`A=[x^2+x+2x+2-5x-1-x-5]/[(x+1)(x+5)]`
`A=[x^2-3x-4]/[(x+1)(x+5)]`
`A=[(x+1)(x-4)]/[(x+1)(x+5)]`
`A=[x-4]/[x+5]`
`c)` Với `x ne -5; x ne -1; x ne 4` có:
`P=A.B=[x-4]/[x+5].[-10]/[x-4]`
`=[-10]/[x+5]`
Để `P` nguyên `<=>[-10]/[x+5] in ZZ`
`=>x+5 in Ư_{-10}`
Mà `Ư_{-10}={+-1;+-2;+-5;+-10}`
`=>x={-4;-6;-3;-7;0;-10;5;-15}` (t/m đk)
Tính giá trị của biểu thức:
a) \(M = 2(a + b)\) tại \(a = 2\), \(b = - 3\);
b) \(N = - 3xyz\) tại \(x = - 2\), \(y = - 1\), \(z = 4\);
c) \(P = - 5{x^3}{y^2} + 1\) tại \(x = - 1\); \(y = - 3\).
a) Thay giá trị \(a = 2\), \(b = - 3\) vào biểu thức đã cho, ta có:
\(M = 2(a + b) = 2.(2 + ( - 3)) = 2.(2 - 3) = 2.( - 1) = - 2\).
b) Thay giá trị \(x = - 2\), \(y = - 1\), \(z = 4\) vào biểu thức đã cho, ta có:
\(N = - 3xyz = ( - 3). (- 2). (- 1).4 = 6. (- 1).4 = ( - 6).4 = - 24\).
c) Thay giá trị \(x = - 1\); \(y = - 3\) vào biểu thức đã cho, ta có:
\(P = - 5{x^3}{y^2} + 1 = - 5.{( - 1)^3}.{( - 3)^2} + 1 = (- 5). (- 1).9 + 1 = 5.9 + 1 = 45 + 1 = 46\).
Tính giá trị của biểu thức:
a) 5x - 4y tại x = 3; y = -6
b) 2x^4 - 5y tại x = -2; y = 4
c) 5x^2 + 3x - 1 tại x = 0 và tại x = -1 và tại x = 1/3
giải giúp mình với
a, Thay x = 3 và y = -6 vào bt ta đc
\(5.3-4.\left(-6\right)=15-\left(-24\right)=39\\ b,\\ 2.\left(-2\right)^2-5.4=8-20=\left(-12\right)\\ c,\\ 5.\left(-1\right)^2+3.\left(-1\right)-1=5+\left(-3\right)-1=1\)
a) Thay x=3; y=-6
\(5x-4y=5.3-4.\left(-6\right)=15+24=39\)
b) Thay x=-2; y=4
\(2x^4-5y=2.\left(-2\right)^4-5.4=32-20=12\)
c, Thay x=0
\(5x^2+3x-1=5.0+3.0-1=-1\)
+) x=-1
\(5x^2+3x-1=5.\left(-1\right)^2+3.\left(-1\right)-1=5-3-1=1\)
+) \(x=\dfrac{1}{3}\)
\(5x^2+3x-1=5.\left(\dfrac{1}{3}\right)^2+3.\dfrac{1}{3}-1\)
\(=\dfrac{5}{9}+1-1=\dfrac{5}{9}\)
Tính giá trị của biểu thức:
a) A= (x+2y)^2 -x+2y tại x=2 và y= -1
b) B=3x^2 +8x -1 tại x thoả mãn (x^2 +4) (x-1)=0
c) C= 3,2x^5y^3 tại x=1 và y=-1
d) D= 3x^2 -5y+1 tại x = giá trị tuyệt đối 3 và y=-1
giúp e với pleaseeeee
a, \(A=\left(x+2y\right)^2-x+2y\)
Thay x = 2 ; y = -1 ta được
\(A=\left(2-2\right)^2-2-2=-4\)
b, Ta có \(\left(x^2+4>0\right)\left(x-1\right)=0\Leftrightarrow x=1\)
Thay x = 1 vào B ta được \(B=3+8-1=10\)
c, Thay x = 1 ; y = -1 ta được
\(C=3,2.1.\left(-1\right)=-3,2\)
d, Ta có \(x=\left|3\right|=3;y=-1\)Thay vào D ta được
\(D=3.9-5\left(-1\right)+1=27+5+1=33\)
thay x=2,y=-1 vào biểu thức A ta có;
A=(2+2.(-1)^2-2+2.(-1)
A=(2+-2)^2-2+-2
A=0-2+-2
A=-4
b)
(x^2+4)(x-1)=0
suy ra x-1=0(x^2+4>0 với mọi x thuộc thuộc R)
(+)x-1=0
x =1
thay x=1 vào biểu thức B ta có;
B=3.1^2+8.1-1
B=3.1+8-1
B=3+8-1
B=10
c)thay x=1 và y=-1 vào biểu thức C ta có;
C=3,2.1^5.(-1)^3
C=3,2.1.(-1)
C=(-3,2)
d)giá trị tuyệt đối của 3=3 hoặc (-3)
TH1;thay x=3:y=-1 vào biểu thức d ta có;
D=3.3^2-5.(-1)+1
D=3.9-(-5)+1
D=27+5+1
D=33
Thực hiện phép tính rồi tính giá trị của biểu thức:
a) A = x(x + y)- x(y - x) tại x= -3; y=2
b) B= 4x(2x + y) + 2y(2x + y)- y(y +2x) tại x=1/2; y= -3/4
c) C= 3x(3 - x)- 5x(x + 1) + 8(x^2 - x - 2) tại x= -1
`a)A=x(x+y)-x(y-x)`
`=x^2+xy-xy+x^2`
`=2x^2`
Thay `x=-3`
`=>A=2.9=18`
`b)B=4x(2x+y)+2y(2x+y)-y(y+2x)`
`=8x^2+4xy+4xy+2y^2-y^2-2xy`
`=8x^2+y^2+6xy`
Thay `x=1/2,y=-3/4`
`=>B=8*1/4+9/16-9/4`
`=2+9/16-9/4`
`=9/16-1/4=5/16`
Tính giá trị của biểu thức:
a) N= (25x2 + 10xy + 4y2)(5x - 2y) tại x=1/5:y=1/2
b) Q= (x + 3y)(x2 - 3xy + 9y2) tại x=y=1/2
Giúp mik với ạ!
a: \(N=\left(5x\right)^3-\left(2y\right)^3=1^3-1^3=0\)
b: \(Q=x^3+27y^3=\dfrac{1}{8}+\dfrac{27}{8}=\dfrac{28}{8}=\dfrac{7}{2}\)
Cho biểu thức:A=\(\dfrac{4\sqrt{x}}{\sqrt{x}-5}:\left(\dfrac{\sqrt{x}-2}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+2}+\dfrac{5-2\sqrt{x}}{x+\sqrt{x}-2}\right)\)
a) Rút gọn biểu thức A.
b) Tính giá trị của biểu thức A tại x=81
c) Tìm x sao cho A<4
Lời giải:
ĐKXĐ: $x\geq 0; x\neq 1; x\neq 25$
a)
\(A=\frac{4\sqrt{x}}{\sqrt{x}-5}:\left[\frac{(\sqrt{x}-2)(\sqrt{x}+2)+\sqrt{x}-1}{(\sqrt{x}-1)(\sqrt{x}+2}+\frac{5-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+2)}\right]\)
\(=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{x-4+\sqrt{x}-1+5-2\sqrt{x}}{(\sqrt{x}-1)(\sqrt{x}+2)}\)
\(=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}(\sqrt{x}-1)}{(\sqrt{x}-1)(\sqrt{x}+2)}=\frac{4\sqrt{x}}{\sqrt{x}-5}:\frac{\sqrt{x}}{\sqrt{x}+2}=\frac{4\sqrt{x}}{\sqrt{x}-5}.\frac{\sqrt{x}+2}{\sqrt{x}}=\frac{4(\sqrt{x}+2)}{\sqrt{x}-5}\)
b) Tại $x=81$ thì $\sqrt{x}=9$.
Khi đó: $A=\frac{4(9+2)}{9-5}=11$
c) $A< 4\Leftrightarrow \frac{\sqrt{x}+2}{\sqrt{x}-5}< 1$
$\Leftrightarrow \frac{7}{\sqrt{x}-5}< 0\Leftrightarrow \sqrt{x}-5< 0$
$\Leftrightarrow 0\leq x< 25$. Kết hợp với ĐKXĐ suy ra: $0\leq x< 25; x\neq 1$