Chứng minh rằng phân số \(\frac{5n+1}{20n+3}\) tối giản với mọi số tự nhiên n.
Chứng minh rằng phân số \(\frac{5n+1}{20n+3}\)tối giản với mọi số tự nhiên n.
Gọi \(\left(5n+1,20n+3\right)\)\(=d\)\(\left(d\in N\right)\)
\(\Rightarrow\hept{\begin{cases}5n+1:d\\20n+3:d\end{cases}}\Rightarrow\hept{\begin{cases}4.\left(5n+1\right):d\\20n+3:d\end{cases}}\Rightarrow\hept{\begin{cases}20n+4:d\\20n+3:d\end{cases}}\)
\(\Rightarrow\left(20n+4\right)-\left(20n+3\right):d\)
hay 1 : d => \(d\inƯ\left(1\right)\)
Mà Ư(1) = {-1;1} => d \(\in\){-1;1}
Vì d là lớn nhất nên d = 1 hay \(\left(5n+1,20n+3\right)=1\)
=> 5n+1 và 20n+3 là 2 số nguyên tố cùng nhau
Vậy \(\frac{5n+1}{20n+3}\)là phân số tối giản với mọi số tự nhiên n
Dấu chia hết mk viết là dấu chia,ủng hộ mk nha !!!
Gọi d = ƯCLN(5n+1, 20n+3) (d thuộc N*)
=> 5n+1 chia hết cho d; 20n+3 chia hết cho d
=> 4.(5n + 1) chia hết cho d; 20n+3 chia hết cho d
=> 20n+4 chia hết cho d; 20n+3 chia hết cho d
=> (20n+4) - (20n+3) chia hết cho d
=> 20n + 4 - 20n - 3 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N* => d = 1
=> ƯCLN(5n+1, 20n+3) = 1
=> phân số 5n+1/20n+3 tối giản (đpcm)
Chú ý: phân số tối giản là phân số có ƯCLN của tử và mẫu = 1
Ủng hộ mk nha ^_-
Chứng minh rằng với mọi số tự nhiên \(n\) thì phân số \(\dfrac{10n^2+9n+4}{20n^2+20n+9}\) tối giản
Để \(\dfrac{10n^2+9n+4}{20n^2+20+9}\) tối giản
\(\Rightarrow10n^2+9n+4⋮1;20n^2+20n+9⋮1\left(n\in N\right)\)
\(\Rightarrow2\left(10n^2+9n+4\right)-\left(20n^2+20n+9\right)⋮1\)
\(\Rightarrow20n^2+18n+8-20n^2-20n+9⋮1\)
\(\Rightarrow-2n-1⋮1\) (luôn đúng \(\forall n\in N\))
\(\Rightarrow dpcm\)
Chứng minh rằng với mọi số tự nhiên thì phân số tối giản
Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{10n^2+9n+4}{20n^2+20n+9}\)tối giản
chứng minh rằng phân số sau tối giản với mọi số tự nhiên n
\(\dfrac{3n+2}{5n+3}\)
Gọi ƯCLN(3n + 2, 5n + 3) = d (d thuộc N*)
Ta có:
3n + 2 chia hết cho d
5n + 3 chia hết cho d
<=> 5(3n + 2) chia hết cho d = (15n + 10) chia hết cho d
<=> 3(5n +3) chia hết cho d = (15n + 9) chia hết cho d
=> (15n + 10) - (15n + 9) chia hết cho d = 1 chia hết cho d
=> d = 1
=> 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau.
Vậy Phân số là phân số tối giản.
tự làm nha thấy đúng cho mik một like
Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản
Gọi d là ƯCLN(5n+2;3n+1)
Ta có 5n+2\(⋮\)d;3n+1\(⋮\)d
=>3*(5n+2)\(⋮\)d;5*(3n+1)\(⋮\)d
=>15n+6\(⋮\)d;15n+5\(⋮\)d
=>[(15n+6)-(15n+5)]\(⋮\)d
=>[15n+6-15n-5]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(5n+2;3n+1)=1 nên phân số \(\frac{5n+2}{3n+1}\) luôn là phân số tối giản(nEN*)
Chứng minh rằng với mọi số tự nhiên n thì phân số \(\frac{7n+4}{5n+3}\) luôn là phân số tối giản
Gọi d là ƯCLN(7n+4;5n+3)
Ta có:7n+4\(⋮\)d;5n+3\(⋮\)d
=>5*(7n+4)\(⋮\)d;7*(5n+3)\(⋮\)d
=>35n+20\(⋮\)d;35n+21\(⋮\)d
=>[(35n+21)-(35n+20)]\(⋮\)d
=>[35n+21-35n-20]\(⋮\)d
=>1\(⋮\)d
=>d=1
Vì ƯCLN(7n+4;5n+3)=1 nên phân số \(\frac{7n+4}{5n+3}\) luôn luôn tối giản(nEN)
Gọi d là UCLN (7n+4;5n+3)
=>*\(\left(7n+4\right)⋮d\Rightarrow5.\left(7n+4\right)⋮d\)
*\(\left(5n+3\right)⋮d\Rightarrow7.\left(5n+3\right)⋮d\)
Suy ra: 5.(7n+4)-7.(5n+3) chia hết cho d
=>35n+20-35n-21 chia hết cho d
=>-1 chia hết cho d
=> d chỉ có thể là 1
=> P/s \(\frac{7n+4}{5n+3}\) tối giản
gọi a là ƯC LN(7n+4;5n+3)
ta có
7n+4\(⋮\)a\(\Rightarrow\)35n+20\(⋮\)a
5n+3\(⋮\)a\(\Rightarrow\)35n+21\(⋮\)a
\(\Rightarrow\)(35n+21)-(35n+20)\(⋮\)a
=1\(⋮\)a\(\Rightarrow\)a=1
Vậy với mọi số tự nhiên n thì phân số \(\frac{7n+4}{5n+3}\)luôn tối giản
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
18. Chứng minh rằng các phân số sau là phân số tối giản với mọi số tự nhiên n:
a) \(\dfrac{n+1}{2n+3}\)
b) \(\dfrac{2n+3}{4n+8}\)
c) \(\dfrac{3n+2}{5n+3}\)
Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*)
\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)
Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)
\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)
Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n+3 là số lẻ nên
\(\Rightarrow d=1\left(đpcm\right)\)
c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
18. Chứng minh rằng các phân số sau là phân số tối giản với mọi số tự nhiên n:
\(\dfrac{ n+1}{2n+3 }\) ý a
\(\dfrac{ 2n+3}{4n+8 }\)ý b
\(\dfrac{ 3n+2}{ 5n+3}\) ý c
Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )
n +1 = 2n + 2 (1) ; 2n+3*) (2)
Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1
vậy ta có đpcm
gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )
3n +2 = 15 n + 10 (1) ; 5n + 3 =15n + 9 (2)
lấy (!) - (2) ta được 15n + 10 - 15n - 9 = 1:d => d = 1
Vậy ta có đpcm