Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen van dung
Xem chi tiết
Kawasaki
Xem chi tiết
Hoàng Nguyệt
Xem chi tiết
Hồng Phúc
7 tháng 8 2021 lúc 14:53

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

Hồng Phúc
7 tháng 8 2021 lúc 15:05

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)

Hồng Phúc
7 tháng 8 2021 lúc 15:23

c, ĐK: \(0\le x\le9\)

Đặt \(\sqrt{9x-x^2}=t\left(0\le t\le\dfrac{9}{2}\right)\)

\(pt\Leftrightarrow9+2\sqrt{9x-x^2}=-x^2+9x+m\)

\(\Leftrightarrow-\left(-x^2+9x\right)+2\sqrt{9x-x^2}+9=m\)

\(\Leftrightarrow-t^2+2t+9=m\)

Khi \(m=9,pt\Leftrightarrow-t^2+2t=0\Leftrightarrow\left[{}\begin{matrix}t=0\\t=2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}9x-x^2=0\\9x-x^2=4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=9\left(tm\right)\\x=\dfrac{9\pm\sqrt{65}}{2}\left(tm\right)\end{matrix}\right.\)

Phương trình đã cho có nghiệm khi phương trình \(m=f\left(t\right)=-t^2+2t+9\) có nghiệm

\(\Leftrightarrow minf\left(t\right)\le m\le maxf\left(t\right)\)

\(\Leftrightarrow-\dfrac{9}{4}\le m\le10\)

Trang Nguyễn
Xem chi tiết
Rin Huỳnh
31 tháng 8 2021 lúc 15:52

a) ĐKXĐ: x <= 2

pt --> 4 - 2x = 25 <=> x = -21/2 (thỏa)

Nguyễn Hoài Đức CTVVIP
31 tháng 8 2021 lúc 15:52

??

Đề kiểu gì vậy ?

Rin Huỳnh
31 tháng 8 2021 lúc 15:53

b) ĐKXĐ: x >= -1

pt <=> 8sqrt(x + 1)=16 <=> sqrt(x+1)=2 --> x + 1 = 4 <=> x = 3

Nguyễn Thành
Xem chi tiết
ILoveMath
31 tháng 10 2021 lúc 19:59

a, ĐKXĐ: \(x\le2\)

\(\sqrt{4-2x}=5\\ \Leftrightarrow4-2x=25\\ \Leftrightarrow2x=-21\\ \Leftrightarrow x=-10,5\left(tm\right)\)

b, ĐKXĐ: \(x\ge-1\)

\(\sqrt{25\left(x+1\right)}+\sqrt{9x+9}=16\\ \Leftrightarrow5\sqrt{x+1}+\sqrt{9\left(x+1\right)}=16\\ \Leftrightarrow5\sqrt{x+1}+3\sqrt{x+1}=16\\ \Leftrightarrow8\sqrt{x+1}=16\\ \Leftrightarrow\sqrt{x+1}=2\\ \Leftrightarrow x+1=4\\ \Leftrightarrow x=3\)

c, \(\sqrt{4x^2+12x+9}=4\Leftrightarrow4x^2+12x+9=16\\ \Leftrightarrow4x^2+12x-7=0\\ \Leftrightarrow\left(4x^2-2x\right)+\left(14x-7\right)=0\\ \Leftrightarrow2x\left(2x-1\right)+7\left(2x-1\right)=0\\ \Leftrightarrow\left(2x-1\right)\left(2x+7\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

 

Nguyễn Lê Phước Thịnh
31 tháng 10 2021 lúc 20:03

a: \(\Leftrightarrow4-2x=25\)

hay \(x=-\dfrac{21}{2}\)

c: \(\Leftrightarrow\left|2x+3\right|=4\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+3=4\\2x+3=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Kaneki Ken
Xem chi tiết
Không Tên
3 tháng 4 2020 lúc 16:19

Câu 1 là \(\left(8x-4\right)\sqrt{x}-1\) hay là \(\left(8x-4\right)\sqrt{x-1}\)?

Khách vãng lai đã xóa
Trần Phúc Khang
3 tháng 4 2020 lúc 17:51

Câu 1:ĐK \(x\ge\frac{1}{2}\)

\(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)

<=> \(\left(4x^2-3x-1\right)+4\left(2x-1\right)\sqrt{x}-2\sqrt{\left(2x-1\right)\left(x+3\right)}\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}\left(2\sqrt{x\left(2x-1\right)}-\sqrt{x+3}\right)=0\)

<=> \(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{8x^2-4x-x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=>\(\left(x-1\right)\left(4x+1\right)+2\sqrt{2x-1}.\frac{\left(x-1\right)\left(8x+3\right)}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}=0\)

<=> \(\left(x-1\right)\left(4x+1+2\sqrt{2x-1}.\frac{8x+3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}\right)=0\)

Với \(x\ge\frac{1}{2}\)thì \(4x+1+2\sqrt{2x-1}.\frac{8x-3}{2\sqrt{x\left(2x-1\right)}+\sqrt{x+3}}>0\)

=> \(x=1\)(TM ĐKXĐ)

Vậy x=1

Khách vãng lai đã xóa
Trần Phúc Khang
3 tháng 4 2020 lúc 18:06

câu 2 ĐK \(x\ge1\)

\(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+18-\left(x+26\right)\sqrt{x-1}=0\)

<=> \(\left(5x+8\right)\left(\sqrt{2x-1}-1\right)+7x\left(\sqrt{x+3}-2\right)+\left(x+26\right)\sqrt{x-1}+10\left(x-1\right)=0\)

<=>\(\left(5x+8\right).\frac{2x-2}{\sqrt{2x-1}+1}+7x.\frac{x+3-4}{\sqrt{x+3}+2}+\left(x+26\right)\sqrt{x-1}+10\left(x-1\right)=0\)

<=> \(\sqrt{x-1}\left(\frac{2\left(5x+8\right)\sqrt{x-1}}{\sqrt{2x-1}+1}+\frac{7x\sqrt{x-1}}{\sqrt{x+3}+2}+\left(x+26\right)+10\sqrt{x-1}\right)=0\)

Với \(x\ge1\)thì cái trong ngoặc >0

=> \(x=1\)

Vậy x=1

Khách vãng lai đã xóa
Kinder
Xem chi tiết
Akai Haruma
31 tháng 12 2020 lúc 14:31

a) Đặt $\sqrt{x+1}=a; \sqrt{9-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b$ với $a,b\geq 0$ và $a^2+b^2=10$Ta có:

$f^2(a,b)=(a+b)^2=a^2+b^2+2ab=10+2ab\geq 10$ do $ab\geq 0$

$\Rightarrow f(a,b)\geq \sqrt{10}$ hay $f_{\min}=\sqrt{10}$

Mặt khác: $f^2(a,b)=(a+b)^2\leq 2(a^2+b^2)=20$ (theo BĐT AM-GM)

$\Rightarrow f(a,b)\leq \sqrt{20}=2\sqrt{5}$ hay $f_{\max}=2\sqrt{5}$

b) 

Đặt $\sqrt{x}=a; \sqrt{2-x}=b$ thì bài toán trở thành:

Tìm max, min của $f(a,b)=a+b+ab$ với $a,b\geq 0$ và $a^2+b^2=2$. Ta có:

$f(a,b)=\sqrt{(a+b)^2}+ab=\sqrt{a^2+b^2+2ab}+ab=\sqrt{2+2ab}+ab\geq \sqrt{2}$ do $ab\geq 0$

Vậy $f_{\min}=\sqrt{2}$

Lại có, theo BĐT AM-GM:

$f(a,b)=\sqrt{2+2ab}+ab\leq \sqrt{2+a^2+b^2}+\frac{a^2+b^2}{2}=\sqrt{2+2}+\frac{2}{2}=3$

Vậy $f_{\max}=3$

 

Akai Haruma
31 tháng 12 2020 lúc 14:34

c) Đặt $\sqrt{8-x^2}=a$ thì bài toán trở thành tìm max, min của:

$f(x,a)=x+a+ax$ với $x,a\geq 0$ và $x^2+a^2=8$. Bài này chuyển về y hệt  như phần b. 

$f_{\min}=2\sqrt{2}$

$f_{\max}=8$

d) Tương tự:

$f_{\min}=2$ khi $x=\pm 2$

$f_{\max}=2+2\sqrt{2}$ khi $x=0$

Nguyễn Huỳnh Minh Thư
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết