nhờ casio và 1 số suy đoán ta biết được max f(x) =7 khi x=0 ,giờ AM-GM ngược thôi :v
ta có: \(f\left(x\right)=\sqrt{\left(2x+3\right)\left(x+3\right)}+\sqrt{4\left(x+4\right)}-2x\)
Áp dụng bất đẳng thức cauchy :
\(\sqrt{\left(2x+3\right)\left(x+3\right)}\le\frac{1}{2}\left(3x+6\right)\)
\(\sqrt{4\left(x+4\right)}\le\frac{1}{2}\left(x+8\right)\)
\(\Rightarrow f\left(x\right)\le\frac{1}{2}\left(4x+14\right)-2x=2x+7-2x=7\)
đẳng thức xảy ra khi \(\hept{\begin{cases}2x+3=x+3\\4=x+4\end{cases}\Leftrightarrow x=0}\)
Còn ý liền trước nó nữa:
Tìm tất cả các cặp số (x, y) thỏa mãn \(2\left(x\sqrt{y-4}+y\sqrt{x-4}\right)=xy\)
LÀM GIÚP MK CÂU TÌM GTLN NHA
HELP ME, PLEASE!