Cho △DEF cân tại D.Gọi M,N lần lượt là trung điểm của DF và DE.Kẻ DH⊥EF.
a)CM EM=FN và ∠DEM=∠DFN.
b)Gọi K=EM ∩ FN.CM KE=KF.
c)CM EM,FN,DH đồng quy.
Cho tam giác cân DEF(DE=DF). Gọi N và M lần lượt là trung điểm của DE và DF, kẻ DH vuông góc với EF tại H.
1.Chứng minh HE=HF. Giả sử DE=DF=5 ,EF= 8.Tính độ dài đoạn DH
2.Chứng minh EM=FN và góc DEM= góc DFN.
3Gọi giao điểm của EM và FN là K. Chứng minh KE=KF
4.Chứng minh ba điểm,D K H thẳng hàng
CÀN GẤP LẮM Ạ, CẢM ƠN MỌI NGƯỜI
a, Ta có: DH là đường cao trong tam giác cân DEF
⇒DH vừa là đường cao, vừa là đường trung tuyến trong tam giác cân DEF
⇒HE=HF
Ta có: HE=HF=EF/2=8/2=4 (cm)
Xét ΔDHE vuông tại H
Theo định lý Pi-ta-go, ta có:
DF²=DH²+HF²
⇒DH²=DF²-HF²
⇒DH²=5²-4²
⇒DH²=9
⇒DH=√9=3 (cm)
b, Xét ΔDME và ΔDNF có:
DM=DN (GT)
A là góc chung
DE=DF (GT)
⇒ ΔDME=ΔDNF (c.g.c)
⇒EM=FN (2 cạnh tương ứng)
DEM=DFN (2 góc tương ứng)
c, Ta có: E=F (GT)
và DEM=DFN (cmt)
⇒KEF=KFE
⇒ΔKEF cân tại K
⇒KE=KF
d, Ta có: DH⊥EF và HE=HF
⇒DH là đường trung trực của EF
mà KE=KF
⇒K là điểm thuộc đường trung trực DH
⇒D, K, H thẳng hàng
Cho tam giác DEF cân tại D. Gọi M,N lần lượt là trung điểm DF và DE. Kẻ DH vuông góc với EF. Chứng minh: EM, FN và DH đồng quy
a: Xet ΔDME và ΔDNF có
DM=DN
góc MDE chung
DE=DF
=>ΔDME=ΔDNF
=>EM=FN và góc DEM=góc DFN
b: Xet ΔNEF và ΔMFE có
NE=MF
EF chung
NF=ME
=>ΔNEF=ΔMFE
=>góc KEF=góc KFE
=>KE=KF
c: ΔDEF cân tại D
mà DH là đường cao
nên DH là trung tuyến
Xét ΔDEF có
DH,FN,EM là trung tuyến
=>DH,FN,EM đồng quy
Cho tam giác cân DEF (DE = DF). Gọi N và M lần lượt là trung điểm của DE và DF, kẻ DH vuông góc với EF tại H.
1. Chứng minh HE = HF. Giả sử DE = DF = 5cm, EF = 8cm. Tính độ dài đoạn DH.
2. Chứng minh EM = FN và góc DEM = DFN
3. Gọi giao điểm của EM và FN là K. Chứng minh KE = KF.
4. Chứng minh ba điểm D, K, H thẳng hàng.
Cho tam giác DEF cân tại D. Gọi N và M lần lượt là trung điểm của DE, DF. Kẻ DH ^ EF tại H.
1/ Chứng minh HE = HF. Tính DH biết DE = 5cm, EF = 8cm.
2/ Chứng minh EM = FN;
DEMˆ=DFNˆDEM^=DFN^
3/ Gọi giao điểm của EM và FN là K. Chứng minh KE = KF.
4/ Chứng minh D, K, H thẳng hàng.
1: Ta có: ΔDEF cân tại D
mà DH là đường cao
nên H là trung điểm của FE
hay HE=HF
EF=8cm
nên HE=4cm
=>DH=3cm
2: Xét ΔDEM và ΔDFN có
DE=DF
\(\widehat{EDM}\) chung
DM=DN
Do đó: ΔDEM=ΔDFN
Suy ra: EM=FN
3: Xét ΔNEF và ΔMFE có
NE=MF
\(\widehat{NEF}=\widehat{MFE}\)
FE chung
Do đó:ΔNEF=ΔMFE
Suy ra: \(\widehat{KFE}=\widehat{KEF}\)
=>ΔKEF cân tại K
hay KE=KF
4: Ta có: DE=DF
nên D nằm trên đường trung trực của EF(1)
ta có: KE=KF
nên K nằm trên đường trung trực của EF(2)
ta có: HE=HF
nên H nằm trên đường trung trực của EF(3)
Từ (1), (2) và (3) suy ra D,K,H thẳng hàng
Mọi người vẽ hình + giải giúp em với ạ, em cảm ơn nhiều
Cho tam giác cân DEF (DE=DF), kẻ DE vuông góc với EF tại H
a, chứng minh HE=HF
b, giả sử xử DE = DF= 5 cm, EF = 8 cm Tính DH
c, gọi N và M lần lượt là trung điểm của DE và DF. Chứng minh EM = FN và Góc DEM = Góc DFN.
d, gọi giao điểm của EM và FN là K . Chứng minh tam giác KEF là tam giác cân
Sửa đề; DH vuông góc EF tại H
a: Xét ΔDHE vuông tại H và ΔDHF vuông tại H có
DE=DF
DH chung
Do đó: ΔDHE=ΔDHF
=>HE=HF
b: Ta có: HE=HF
H nằm giữa E và F
Do đó: H là trung điểm của EF
=>\(HE=HF=\dfrac{EF}{2}=4\left(cm\right)\)
ΔDHE vuông tại H
=>\(DH^2+HE^2=DE^2\)
=>\(DH^2=5^2-4^2=9\)
=>\(DH=\sqrt{9}=3\left(cm\right)\)
c: Ta có: \(DM=MF=\dfrac{DF}{2}\)
\(DN=NE=\dfrac{DE}{2}\)
mà DF=DE
nên DM=MF=DN=NE
Xét ΔDME và ΔDNF có
DM=DN
\(\widehat{MDE}\) chung
DE=DF
Do đó: ΔDME=ΔDNF
=>EM=FN và \(\widehat{DEM}=\widehat{DFN}\)
d: Xét ΔNEF và ΔMFE có
NE=MF
NF=ME
EF chung
Do đó: ΔNEF=ΔMFE
=>\(\widehat{NFE}=\widehat{MEF}\)
=>\(\widehat{KEF}=\widehat{KFE}\)
=>ΔKEF cân tại K
Cho tam giác DEF có DE=DF, gọi M và N lần lượt là trung điểm của DE=DE.
a) CM: EN=FM, góc DEM= góc DFN
b) Gọi giao điểm của EM và FN là K. CM: KE=KF\
c) CM: DK là tia phaangiacs của góc EBF
cho tam giác cân DEF(DE=DF). gọi M và N lần lượt là trung điểm của DE và DF.
a) chứng minh EM=FN và góc DEM= góc DFN
b) gọi giao điểm của EM và FN là K. chứng minh KE=KF
c) chứng minh DK là phân giác của góc EDF và DK kéo dài đi qua trung điểm H của EF
cho tam giác DEF ( DE=DF) . Gọi M và N lần lượt là trung điểm của DE và DF.
a) Chúng minh EM=FN và góc DEM =góc DFN
b) EM cắt FN tại K .C/M KE = KF
C) C/m DK là tia phân giác của góc EDF và DK đi qua trung điểm H của EF
a. vì tam giác DEF cân => DE=DF=>1/2DE=1/2DF=>DM=DN
Xét 2 tam giác DEM và tam giác DFNcó
DE=DF(gt)
góc D chung
DM=DN (cmt)
=>tam giác DEM = tam giác DFN(c,g,c)
=> EM=FN(cạnh tương ứng)
b. Vì góc DEM=góc DFN (cmt)
góc DEF =góc DEF (suy từ giả thuyết)
=>DEF - DEM = DFE - DFN => KEF = KFE
=> tam giác KEF cân
=> KE=KF
c. xét 2 tam giác : tam giác DKE và tam giácDKF
DE=DF (gt)
DK chung
KE=KF (cmt)
tam giác DKE =tam giác DKF (c.c.c)
=> góc EDK = góc FDK
kéo dài DK và và két EF tại H'
xét 2 tam giác tam giác DH'Evà tam giác DH'F
DE=DF
EDH'=FDH'
DH' chung
=> tam giác DH'E= tam giác DH'F
=>H'E =H'F(c.t.ư)
=> H và H' trùng nhau
=>Dk đi qua H
Cho tam giác DEF cân (DE=DF). Gọi M và N là giao điểm của DE và DF.
a,chứng minh EM =FN và góc DEM=góc DFM
b.gọi k là giao điểm của EM và FN. chứng minh KE= KF