Cho tam giác cân DEF(DE=DF). Gọi N và M lần lượt là trung điểm của DE và DF, kẻ DH vuông góc với EF tại H.
1.Chứng minh HE=HF. Giả sử DE=DF=5 ,EF= 8.Tính độ dài đoạn DH
2.Chứng minh EM=FN và góc DEM= góc DFN.
3Gọi giao điểm của EM và FN là K. Chứng minh KE=KF
4.Chứng minh ba điểm,D K H thẳng hàng
CÀN GẤP LẮM Ạ, CẢM ƠN MỌI NGƯỜI
a, Ta có: DH là đường cao trong tam giác cân DEF
⇒DH vừa là đường cao, vừa là đường trung tuyến trong tam giác cân DEF
⇒HE=HF
Ta có: HE=HF=EF/2=8/2=4 (cm)
Xét ΔDHE vuông tại H
Theo định lý Pi-ta-go, ta có:
DF²=DH²+HF²
⇒DH²=DF²-HF²
⇒DH²=5²-4²
⇒DH²=9
⇒DH=√9=3 (cm)
b, Xét ΔDME và ΔDNF có:
DM=DN (GT)
A là góc chung
DE=DF (GT)
⇒ ΔDME=ΔDNF (c.g.c)
⇒EM=FN (2 cạnh tương ứng)
DEM=DFN (2 góc tương ứng)
c, Ta có: E=F (GT)
và DEM=DFN (cmt)
⇒KEF=KFE
⇒ΔKEF cân tại K
⇒KE=KF
d, Ta có: DH⊥EF và HE=HF
⇒DH là đường trung trực của EF
mà KE=KF
⇒K là điểm thuộc đường trung trực DH
⇒D, K, H thẳng hàng