Cho HCN ABCD (AB > BC).Lấy điểm M tùy ý trên cạnh AB ( M # A và B ) .Đường thẳng DM cắt AC ở K và cắt đường thẳng BC
a.Chứng minh KD mũ 2 =KM*KN
Cho Δ ABC. Lấy điểm M tùy ý trên cạnh BC. Lấy N tùy ý trên cạnh AM. Đường thẳng
DE // BC (D ∈ AB, E ∈ AC). Gọi P là giao điểm của DM và BN và Q là giao điểm của CN và EM.
Chứng minh rằng: PQ // BC.
Xét ΔPDN và ΔPMB có
góc PDN=góc PMB
góc DPN=góc MPB
=>ΔPDN đồng dạng với ΔPMB
=>PD/PM=DN/MB=AN/AM
Xét ΔQNE và ΔQCM có
góc QNE=góc QCM
góc NQE=góc CQM
=>ΔQNE đồng dạng với ΔQCM
=>QN/QC=NE/CM=QE/QM=AN/AM
=>QE/QM=DP/PM
=>MP/PD=MQ/QE
=>PQ//DE
=>PQ//BC
cho hcn abcd ad=3ab.Trên cạnh bc lấy điểm m tùy í am cắt cd tại b .cmr 1/am^2 +9/ad^2 =1/ab^2
Cho hình bình hành ABCD (AB>). Lấy điểm M tùy ý trên cạnh AB. Đường thẳng DM cắt AC tại K và cắt đường thẳng BC ở N .
1) Chứng minh tgiac ADK ∽ tgiac CNK
2) Chứng minh KM.KC=KD.KA
1: Xét ΔADK và ΔCNK có
góc AKD=góc CKN
góc DAK=góc NCK
=>ΔADK đồng dạng với ΔCNK
2: Xét ΔKAM và ΔKCD có
góc KAM=góc KCD
góc AKM=góc CKD
=>ΔKAM đồng dạng với ΔKCD
=>KA/KC=KM/KD
=>KA*KD=KM*KC
Cho hình bình hành ABCD (AB>). Lấy điểm M tùy ý trên cạnh AB. Đường thẳng DM cắt AC tại K và cắt đường thẳng BC ở N .
1) Chứng minh tgiac ADK ∽ tgiac CNK
2) Chứng minh KM.KC=KD.KA
Cho hình bình hành ABCD (AB > BC). Lấy điểm M tùy ý trên cạnh AB (M ≠ A, M ≠ B). Đường thẳng DM cắt AC tại K và cắt đường thẳng BC tại N.
a) C/m: ΔNMB ∼ ΔNDC; ΔAKD ∼ ΔCKN.
b) C/m: KD2 = KM.KN
c) Biết NB = 6cm; NC = 15cm; MB = 4cm.
Tìm tỉ số đồng dạng của ΔNMB và ΔNDC.
2. Cho tứ giác ABCD. Lấy điểm M tùy ý trên cạnh AB xác định điểm N trên cạnh DC sao cho MN chia tứ giác ABCD thành hai phần có diện tích bằng nhau
2. Cho tứ giác ABCD. Lấy điểm M tùy ý trên cạnh AB xác định điểm N trên cạnh DC sao cho MN chia tứ giác ABCD thành hai phần có diện tích bằng nhau.
Chohcn ABCD có AD=2AB. Lấy M tùy ý trên BC, đường thẳng qua A vuông góc với AM cắt đường thẳng DC tại P. Vẽ hcn PAMN
a) CMR NC⊥AC
b) Xác định vị trí M để SAMNP= \(\dfrac{25}{16}\)SABCD
c) Tính S△AMN khi M là trung điểm BC và AB=4,5cm
E đang cần gắp ạ
cho HCN ABCD trên cạnh AB lấy điểm P ,trên cạnh BC lấy điểm Q sao cho AP=CQ
a so sánh s tứ giác ABQD và PBCQ
b gọi M là trung điểm của bc ,tính s tam giác PMQ biết ab=10cm bc=6cm
ủa thuỳ dương
bài này cô ra lâu rồi năng dừ mới làm
bạn vẽ hình rồi làm quá dễ mà