Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn An
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 7 2021 lúc 16:23

ĐKXĐ: \(x\ge\dfrac{17}{21}\)

\(\Leftrightarrow x^2-3x+2+\left(\sqrt{2x^2-x+3}-\left(x+1\right)\right)+\left(3x-1-\sqrt{21x-17}\right)=0\)

\(\Leftrightarrow x^2-3x+2+\dfrac{x^2-3x+2}{\sqrt{2x^2-x+3}+x+1}+\dfrac{9\left(x^2-3x+2\right)}{3x-1+\sqrt{21x-17}}=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(1+\dfrac{1}{\sqrt{2x^2-x+3}+x+1}+\dfrac{9}{3x-1+\sqrt{21x-17}}\right)=0\)

\(\Leftrightarrow x^2-3x+2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Đức Anh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
8 tháng 4 2023 lúc 9:05

Với a,b,c dưog thì \(\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}>=\dfrac{\left(x+y+z\right)^2}{a+b+c}\)

\(P>=\dfrac{\left(x+y+z\right)^2}{xy+yz+xz+\sqrt{1+x^3}+\sqrt{1+y^3}+\sqrt{1+z^3}}\)

\(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}< =\dfrac{2+x^2}{2}\)

Dấu = xảy ra khi x=2

=>\(P>=\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2+6}=\dfrac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2+6}\)

Đặt t=(x+y+z)^2(t>=36)

=>P>=2t/t-6

Xét hàm số \(f\left(t\right)=\dfrac{t}{t+6}\left(t>=36\right)\)

\(f'\left(t\right)=\dfrac{6}{\left(t+6\right)^2}>=0,\forall t>=36\)

=>f(t) đồng biến

=>f(t)>=f(36)=6/7

=>P>=12/7

Dấu = xảy ra khi x=y=z=2

Đức Anh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 4 2023 lúc 9:45

\(\sqrt{2x\left(y+z\right)}< =\dfrac{2x+y+z}{2}\)

=>\(\dfrac{1}{\sqrt{x\left(y+z\right)}}>=\dfrac{2\sqrt{2}}{2x+y+z}\)

=>\(P>=2\sqrt{2}\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)

\(\Leftrightarrow P>=2\sqrt{2}\cdot\dfrac{\left(1+1+1\right)^2}{\left(2x+y+z\right)+x+2y+z+x+y+2z}=\dfrac{18\sqrt{2}}{4\cdot18\sqrt{2}}=\dfrac{1}{4}\)

Dấu = xảy ra khi x=y=z=6căn 2

Nguyễn Lê Tiểu Long
Xem chi tiết
tthnew
2 tháng 8 2019 lúc 18:55

thử liên hợp nha!a Trần Thanh Phương check giúp:v

ĐK: \(x\ge\frac{17}{21}\)

Nháp: Ta ghép liên hợp;\(\left\{{}\begin{matrix}\sqrt{2x^2-x+3}=x+1\\\sqrt{21x-17}=3x-1\end{matrix}\right.\)

Bài làm: \(PT\Leftrightarrow x^2+1+\sqrt{2x^2-x+3}-\left(x+1\right)-\sqrt{21x-17}=0\)

\(\Leftrightarrow x^2-3x+2+\sqrt{2x^2-x+3}-\left(x+1\right)+\left(3x-1\right)-\sqrt{21x-17}=0\)

Nhân liên hợp nào:)

\(\Leftrightarrow x^2-3x+2+\frac{x^2-3x+2}{\sqrt{2x^2-x+3}+x+1}+\frac{9\left(x^2-3x+2\right)}{3x-1+\sqrt{21x-17}}=0\)

\(\Leftrightarrow\left(x^2-3x+2\right)\left(1+\frac{1}{\sqrt{2x^2-x+3}+x+1}+\frac{9}{3x-1+\sqrt{21x-17}}\right)=0\)

Cái ngoặc to hiển nhiên vô nghiệm.

Suy ra \(x^2-3x+2=0\Leftrightarrow\left[{}\begin{matrix}x=1\left(TM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

P/s: Nghiệm đẹp thì thấy dễ vậy chứ nghiệm xấu thử coi làm trong bao nhiêu phút:v Ko biết em có tính nhầm chỗ nào ko đây:)

Ánh Dương
Xem chi tiết
Nguyễn Việt Lâm
21 tháng 10 2019 lúc 13:29

1/

a/ ĐKXĐ: ...

\(A=\frac{\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(1-\sqrt{x}\right)\left(1+\sqrt{x}\right)}+\frac{\sqrt{x}\left(\sqrt{x}+1\right)\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\)

\(=\left(2\sqrt{x}-1\right)\left(\frac{x-\sqrt{x}+1+\sqrt{x}\left(1-\sqrt{x}\right)}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\right)\)

\(=\frac{2\sqrt{x}-1}{\left(1-\sqrt{x}\right)\left(x-\sqrt{x}+1\right)}\)

Câu b không rút gọn được, lập phương lên thì biểu thức là nghiệm của pt \(x^3+6x-6=0\) ko có nghiệm đẹp

Bài 2:

a/ ĐKXĐ: \(x\ge2\)

\(\Leftrightarrow\sqrt{\left(x-1\right)\left(x-2\right)}-\sqrt{x-2}-\sqrt{\left(x-1\right)\left(x+3\right)}+\sqrt{x+3}=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x-1}-1\right)-\sqrt{x+3}\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-\sqrt{x+3}\right)\left(\sqrt{x-1}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=1\\\sqrt{x-2}=\sqrt{x+3}\left(vn\right)\end{matrix}\right.\) \(\Rightarrow x=2\)

Khách vãng lai đã xóa
Nguyễn Việt Lâm
21 tháng 10 2019 lúc 13:29

2/

b/

\(\Leftrightarrow\sqrt{\left(x-4\right)\left(2x-1\right)}+3\sqrt{2x-1}=\sqrt{\left(x+11\right)\left(2x-1\right)}\)

Để phương trình đã cho xác định thì:

\(\left\{{}\begin{matrix}\left(x-4\right)\left(2x-1\right)\ge0\\2x-1\ge0\\\left(x+11\right)\left(2x-1\right)\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}x\ge4\\x\le\frac{1}{2}\left(1\right)\end{matrix}\right.\\x\ge\frac{1}{2}\left(2\right)\end{matrix}\right.\)

Từ (1) và (2) \(\Rightarrow x=\frac{1}{2}\) thay vào pt thấy thỏa mãn

Vậy \(x=\frac{1}{2}\) là nghiệm duy nhất

c/ ĐKXĐ: ...

\(\Leftrightarrow x^2-2x+1+2017x-2016-2\sqrt{2017x-2016}+1=0\)

\(\Leftrightarrow\left(x-1\right)^2+\left(\sqrt{2017x-2016}-1\right)^2=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\\sqrt{2017x-2016}-1=0\end{matrix}\right.\) \(\Rightarrow x=1\)

d/ \(\Leftrightarrow\sqrt{\left(1+x^2\right)^3}-1+3x^4-4x^3=0\)

\(\Leftrightarrow\frac{\left(1+x^2\right)^3-1}{\left(1+x^2\right)^3+1}+x^2\left(3x^2-4x\right)=0\)

\(\Leftrightarrow\frac{x^6+3x^4+3x^2}{\left(1+x^2\right)^2+1}+x^2\left(3x^2-4x\right)=0\)

\(\Leftrightarrow x^2\left(\frac{x^4+3x^3+3}{x^4+2x^2+2}+3x^2-4x\right)=0\)

\(\Rightarrow x=0\)

Khách vãng lai đã xóa
Nguyễn Quỳnh Chi
Xem chi tiết
Xyz OLM
10 tháng 7 2023 lúc 22:25

ĐKXĐ : \(x^4+\left(\sqrt{3}-\sqrt{2}\right).x^2-\sqrt{6}\ne0\)

\(\Leftrightarrow x\ne\sqrt[4]{2}\)

\(P=\dfrac{x^2-\sqrt{2}}{x^4+\left(\sqrt{3}-\sqrt{2}\right).x^2-\sqrt{6}}\)

\(=\dfrac{x^2-\sqrt{2}}{\left(x^4-\sqrt{2}x^2\right)+\sqrt{3}\left(x^2-\sqrt{2}\right)}\) 

\(=\dfrac{x^2-\sqrt{2}}{\left(x^2+\sqrt{3}\right)\left(x^2-\sqrt{2}\right)}=\dfrac{1}{x^2+\sqrt{3}}\)

 

Phạm Mạnh Kiên
Xem chi tiết
Trương Huy Hoàng
29 tháng 7 2021 lúc 16:03

Bài 4: 

a, \(\sqrt{3x+4}-\sqrt{2x+1}=\sqrt{x+3}\) (ĐK: \(x\ge\dfrac{-1}{2}\))

\(\Rightarrow\) \(\left(\sqrt{3x+4}-\sqrt{2x+1}\right)^2\) = x + 3

\(\Leftrightarrow\) \(3x+4+2x+1-2\sqrt{\left(3x+4\right)\left(2x+1\right)}=x+3\)

\(\Leftrightarrow\) \(4x+2=2\sqrt{6x^2+11x+4}\)

\(\Leftrightarrow\) \(2x+1=\sqrt{6x^2+11x+4}\)

\(\Rightarrow\) \(4x^2+4x+1=6x^2+11x+4\)

\(\Leftrightarrow\) \(2x^2+7x+3=0\)

\(\Delta=7^2-4.2.3=25\)\(\sqrt{\Delta}=5\)

Vì \(\Delta\) > 0; theo hệ thức Vi-ét ta có:

\(x_1=\dfrac{-7+5}{4}=\dfrac{-1}{2}\)(TM); \(x_2=\dfrac{-7-5}{4}=-3\) (KTM)

Vậy ...

Các phần còn lại bạn làm tương tự nha, phần d bạn chuyển \(-\sqrt{2x+4}\) sang vế trái rồi bình phương 2 vế như bình thường là được

Bài 5: 

a, \(\sqrt{x+4\sqrt{x}+4}=5x+2\)

\(\Leftrightarrow\) \(\sqrt{\left(\sqrt{x}+2\right)^2}=5x+2\)

\(\Rightarrow\) \(\sqrt{x}+2=5x+2\)

\(\Leftrightarrow\) \(5x-\sqrt{x}=0\)

\(\Leftrightarrow\) \(\sqrt{x}\left(5\sqrt{x}-1\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}\sqrt{x}=0\\5\sqrt{x}-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{25}\end{matrix}\right.\)

Vậy ...

Phần b cũng là hằng đẳng thức thôi nha \(\sqrt{x^2-2x+1}=\sqrt{\left(x-1\right)^2}=x-1\)\(\sqrt{x^2+4x+4}=\sqrt{\left(x+2\right)^2}=x+2\) rồi giải như bình thường là xong nha!

VD1:

a, \(\sqrt{2x-1}=\sqrt{2}-1\) (x \(\ge\) \(\dfrac{1}{2}\))

\(\Leftrightarrow\) \(2x-1=\left(\sqrt{2}-1\right)^2\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x-1=2-2\sqrt{2}+1\)

\(\Leftrightarrow\) \(2x=4-2\sqrt{2}\)

\(\Leftrightarrow\) \(x=2-\sqrt{2}\) (TM)

Vậy ...

Phần b tương tự nha

c, \(\sqrt{3}x^2-\sqrt{12}=0\)

\(\Leftrightarrow\) \(\sqrt{3}x^2=\sqrt{12}\)

\(\Leftrightarrow\) \(x^2=2\)

\(\Leftrightarrow\) \(x=\pm\sqrt{2}\)

Vậy ...

d, \(\sqrt{2}\left(x-1\right)-\sqrt{50}=0\)

\(\Leftrightarrow\) \(\sqrt{2}\left(x-1\right)=\sqrt{50}\)

\(\Leftrightarrow\) \(x-1=5\)

\(\Leftrightarrow\) \(x=6\)

Vậy ...

VD2: 

Phần a dễ r nha (Bình phương 2 vế rồi tìm x như bình thường)

b, \(\sqrt{x^2-x}=\sqrt{3-x}\) (\(x\le3\); \(x^2\ge x\))

\(\Leftrightarrow\) \(x^2-x=3-x\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(x^2=3\)

\(\Leftrightarrow\) \(x=\pm\sqrt{3}\) (TM)

Vậy ...

c, \(\sqrt{2x^2-3}=\sqrt{4x-3}\) (x \(\ge\) \(\dfrac{\sqrt{3}}{2}\))

\(\Leftrightarrow\) \(2x^2-3=4x-3\) (Bình phương 2 vế)

\(\Leftrightarrow\) \(2x^2-4x=0\)

\(\Leftrightarrow\) \(2x\left(x-2\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}2x=0\\x-2=0\end{matrix}\right.\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=0\left(KTM\right)\\x=2\left(TM\right)\end{matrix}\right.\)

Vậy ...

Chúc bn học tốt! (Có gì không biết cứ hỏi mình nha!)

Vương Thiên Nhi
Xem chi tiết
Phạm Lan Hương
15 tháng 11 2019 lúc 22:48
https://i.imgur.com/HEBnZ8f.jpg
Khách vãng lai đã xóa
Phạm Lan Hương
15 tháng 11 2019 lúc 22:49
https://i.imgur.com/4JUKzvG.jpg
Khách vãng lai đã xóa
Tâm Cao
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 2 2021 lúc 21:01

ĐKXĐ: ...

Đặt \(\left\{{}\begin{matrix}u=v\\v=\sqrt{17-x^2}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u+v+uv=9\\u^2+v^2=17\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}uv=9-\left(u+v\right)\\\left(u+v\right)^2-2uv=17\end{matrix}\right.\)

\(\Rightarrow\left(u+v\right)^2+2\left(u+v\right)-35=0\)

\(\Rightarrow\left[{}\begin{matrix}u+v=5\Rightarrow uv=4\\u+v=-7\Rightarrow uv=16\end{matrix}\right.\)

\(\Rightarrow...\)