Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Như Quỳnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2021 lúc 23:02

Đề 1: 

a: Xét ΔABH vuông tại H có 

\(AB^2=AH^2+HB^2\)

hay HB=18(cm)

Xét ΔBCA vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AH^2=HB\cdot HC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BC=50\left(cm\right)\\HC=32\left(cm\right)\end{matrix}\right.\)

Xét ΔACH vuông tại H có 

\(AC^2=AH^2+HC^2\)

nên AC=40(cm)

b: Xét ΔAHC vuông tại H và ΔDHB vuông tại H có

\(\widehat{HAC}=\widehat{HDB}\)

Do đó: ΔAHC\(\sim\)ΔDHB

Suy ra: \(\dfrac{AC}{DB}=\dfrac{HC}{HB}\)

hay \(DB=\dfrac{32}{18}\cdot40=\dfrac{640}{9}\left(cm\right)\)

Minh Ngô
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2021 lúc 19:49

a: \(AH=4\sqrt{3}\left(cm\right)\)

HC=12cm

BC=16cm

hoanhhao12
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 7 2023 lúc 10:59

AB=căn AH*AC=6(cm)

BC=căn AC^2-AB^2=căn 9^2-6^2=căn 45=3*căn 5(cm)

Xét ΔABC vuông tại B có sin C=AB/AC=6/9=2/3

nên góc C=42 độ

=>góc A=48 độ

Xun TiDi
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 11 2021 lúc 23:40

a: \(AH=2\sqrt{6}\left(cm\right)\)

\(AB=2\sqrt{10}\left(cm\right)\)

\(AC=2\sqrt{15}\left(cm\right)\)

Hoàng Bắc Nguyệt
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 5 2023 lúc 10:45

\(AB=AC\cdot cos60=2,5cm\)

Nguyễn Hà Thảo
Xem chi tiết
Nguyễn Hoàng Minh
19 tháng 9 2021 lúc 10:10

\(1,\)

\(a,\) Áp dụng HTL tam giác

\(\left\{{}\begin{matrix}AH^2=CH\cdot BH\\AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}BH=\dfrac{AH^2}{CH}=\dfrac{25}{6}\left(cm\right)\\AB=\sqrt{\dfrac{25}{6}\left(\dfrac{25}{6}+6\right)}=\dfrac{5\sqrt{61}}{6}\left(cm\right)\\AC=\sqrt{6\left(\dfrac{25}{6}+6\right)}=\sqrt{61}\left(cm\right)\end{matrix}\right.\\ BC=\dfrac{25}{6}+6=\dfrac{61}{6}\left(cm\right)\)

\(b,S_{ABC}=\dfrac{1}{2}AH\cdot BC=\dfrac{1}{2}\cdot5\cdot\dfrac{61}{6}=\dfrac{305}{12}\left(cm^2\right)\)

Hoang NGo
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 2 2022 lúc 15:42

b: \(BH=\dfrac{5\sqrt{3}}{3}\left(cm\right)\)

a: Đề sai rồi bạn

Nguyễn Ngọc Huy Toàn
13 tháng 2 2022 lúc 15:45

a.=> BC = BH + CH = 1 + 3 = 4 cm

áp dụng định lý pitago vào tam giác vuông AHB

\(AB^2=HB^2+AH^2\)

\(AB=\sqrt{1^2+2^2}=\sqrt{5}cm\)

áp dụng định lí pitago vào tam giác vuông AHC

\(AC^2=AH^2+HC^2\)

\(AC=\sqrt{2^2+3^2}=\sqrt{13}cm\)

Hạ Ann
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2021 lúc 20:11

Bài 1: 

a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH=\dfrac{9^2}{15}=\dfrac{81}{15}=5.4\left(cm\right)\)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=15-5,4=9,6(cm)

b) Ta có: BH+CH=BC(H nằm giữa B và C)

nên BC=1+3=4(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(\left\{{}\begin{matrix}AB^2=BH\cdot BC=1\cdot4=4\left(cm\right)\\AC^2=CH\cdot BC=3\cdot4=12\left(cm\right)\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=2\left(cm\right)\\AC=2\sqrt{3}\left(cm\right)\end{matrix}\right.\)

Nguyễn Thị Bảo Trân
Xem chi tiết
Thanh Hoàng Thanh
3 tháng 12 2021 lúc 9:22

Xét tam giác ABC vuông tại B có: 

AC2 = AB2 + BC2 (định lý Py ta go).

Thay số: AC2 = 122 + 162.

<=> AC2 = 144 + 256.

<=> AC2 = 400.

<=> AC2 = 202 (AC > 0).

<=> AC = 20 (cm).

Vậy AC = 20 cm.

Xét tam giác ABC vuông tại B có: BH là đường cao (gt).

=> BH . AC = AB . BC (Hệ thức lượng).

Thay: BH . 20 = 12 . 16.

<=> BH = 9.6 (cm).

Vậy BH = 9.6 cm.

 

Quân
8 tháng 12 2021 lúc 12:23

Xét tam giác ABC vuông tại B có: 

AC2 = AB2 + BC2 (định lý Py ta go).

Thay số: AC2 = 122 + 162.

<=> AC2 = 144 + 256.

<=> AC2 = 400.

<=> AC2 = 202 (AC > 0).

<=> AC = 20 (cm).

Vậy AC = 20 cm.

Xét tam giác ABC vuông tại B có: BH là đường cao (gt).

=> BH . AC = AB . BC (Hệ thức lượng).

Thay: BH . 20 = 12 . 16.

<=> BH = 9.6 (cm).

Vậy BH = 9.6 cm.

Nguyễn Hoàng Hà
Xem chi tiết