Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hi Mn
Xem chi tiết
Nguyễn Tấn Dũng
Xem chi tiết
Nguyễn Tấn Dũng
Xem chi tiết
Sai Lầm Moon
Xem chi tiết
Trần Quốc Lộc
18 tháng 6 2018 lúc 9:07

\(A=3\left(ab+bc+ca\right)+\dfrac{1}{2}\left(a-b\right)^2+\dfrac{1}{4}\left(b-c\right)^2+\dfrac{1}{8}\left(c-a\right)^2\\ =3\left(ab+bc+ca\right)+\dfrac{\left(a-b\right)^2}{2}+\dfrac{\left(b-c\right)^2}{4}+\dfrac{\left(c-a\right)^2}{8}\)

Áp dụng BDT: Cô-si dạng Engel:

\(\Rightarrow A=3\left(ab+bc+ca\right)+\dfrac{\left(a-b\right)^2}{2}+\dfrac{\left(b-c\right)^2}{4}+\dfrac{\left(c-a\right)^2}{8}\ge3\left(ab+bc+ca\right)+\dfrac{\left(a-b+b-c+c-a\right)^2}{2+4+8}=3\left(ab+bc+ca\right)\left(1\right)\)

\(\text{Ta lại có: }ab+bc+ac\le a^2+b^2+c^2\\ \Leftrightarrow ab+bc+ac+2\left(ab+bc+ac\right)\le a^2+b^2+c^2+2\left(ab+bc+ac\right)\\ \Leftrightarrow3\left(ab+bc+ac\right)\le\left(a+b+c\right)^2=3^2=9\left(2\right)\)

Từ \(\left(1\right)\)\(\left(2\right)\Rightarrow A\le9\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}a=b=c\\a+b+c=3\\\dfrac{a-b}{2}+\dfrac{b-c}{4}+\dfrac{c-a}{8}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=1\\c=1\end{matrix}\right.\Leftrightarrow a=b=c=1\)

Vậy \(A_{Max}=9\) khi \(a=b=c=1\)

Neet
Xem chi tiết
Alchemy4869
30 tháng 12 2017 lúc 11:47

Đành giải tạm bằng nick này vì sợ một vài thành phần trẻ trâu anti phá phách :poor:

Phân tích và giải

Dễ thấy: Dấu "=" khi \(a=b=c=1\)

\(\Rightarrow L=Σ\dfrac{a}{\left(a+1\right)^2}=\dfrac{3}{4}\text{ và }F=-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}=-\dfrac{1}{2}\)

Khi đó \(VT=L-F=\dfrac{3}{4}-\dfrac{1}{2}=\dfrac{1}{4}\)

Ta sẽ chia làm 2 bước cm:

B1: \(Σ\dfrac{a}{\left(a+1\right)^2}\le\dfrac{3}{4}\). Ta xét BĐT :

\(\dfrac{a}{\left(a+1\right)^2}=\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2k}+a^k\right)}{8\left(a^{2k}+a^k+1\right)}\) (cần tìm \(k\) thỏa mãn)

\(\Leftrightarrow8a\left(a^{2k}+a^k+1\right)-3\left(a^{2k}+a^k\right)\left(a^2+2a+1\right)\le0\)\(\Leftrightarrow f\left(a\right)=-3a^{2k}+2a^{k+1}-3a^{k+2}+2a^{2k+1}-3a^{2k+2}-3a^k+8a\)

\(\Rightarrow f'\left(a\right)=2k\cdot-3a^{2k-1}+\left(k+1\right)2a^k-\left(k+2\right)3a^{k+1}+\left(2k+1\right)2a^{2k}-\left(2k+2\right)3a^{2k+1}-k\cdot3a^{k-1}+8a\)

\(\Rightarrow f'\left(1\right)=0\Rightarrow-12k=0\Rightarrow k=0\)

Hay BĐT phụ cần tìm là \(\dfrac{a}{a^2+2a+1}\le\dfrac{3\left(a^{2\cdot0}+a^0\right)}{8\left(a^{2\cdot0}+a^0+1\right)}=\dfrac{1}{4}\) (bài này \(k\) đẹp ra luôn \(\farac{1}{4}\) cộng vào là ok =))

\(\Leftrightarrow-\dfrac{\left(a-1\right)^2}{4\left(a+1\right)^2}\le0\) *Đúng* \(\RightarrowΣ\dfrac{a}{\left(a+1\right)^2}\leΣ\dfrac{1}{4}=\dfrac{3}{4}\)

B2: CM \(-\dfrac{4}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\le-\dfrac{1}{2}\)

Tự cm nhé Goodluck :v

Dong tran le
31 tháng 12 2017 lúc 22:33

đây là hệ số bất định

Neet
1 tháng 1 2018 lúc 2:38

Một lời giải sơ cấp:

Đổi \(\left(a;b;c\right)\rightarrow\left(\dfrac{x}{y};\dfrac{y}{z};\dfrac{z}{x}\right)\).BDT cần chứng minh tương đương:

\(\sum\dfrac{xy}{\left(x+y\right)^2}-\dfrac{4xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\le\dfrac{1}{4}\)

\(\Leftrightarrow\left[\dfrac{3}{4}-\sum\dfrac{xy}{\left(x+y\right)^2}\right]+\left[\dfrac{4xyz}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}-\dfrac{1}{2}\right]\ge0\)

\(\Leftrightarrow\sum\left[\dfrac{1}{4}-\dfrac{xy}{\left(x+y\right)^2}\right]-\dfrac{\sum\left(x^2+y^2\right)z-6xyz}{2\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge0\)

\(\Leftrightarrow\sum\dfrac{\left(x-y\right)^2}{4\left(x+y\right)^2}-\dfrac{\sum z\left(x-y\right)^2}{2\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge0\)

\(\Leftrightarrow\sum\left(x-y\right)^2\left[\dfrac{1}{4\left(x+y\right)^2}-\dfrac{z}{2\left(x+y\right)\left(y+z\right)\left(z+x\right)}\right]\ge0\)

hay \(S_a\left(y-z\right)^2+S_b\left(z-x\right)^2+S_c\left(x-y\right)^2\ge0\)(*)

với \(\left\{{}\begin{matrix}S_a=\dfrac{1}{4\left(y+z\right)^2}-\dfrac{x}{2\prod\left(x+y\right)}=\dfrac{\left(x-y\right)\left(x-z\right)}{4\left(y+z\right)^2\left(x+y\right)\left(x+z\right)}\\S_b=\dfrac{1}{4\left(x+z\right)^2}-\dfrac{y}{2\prod\left(x+y\right)}=\dfrac{\left(y-x\right)\left(y-z\right)}{4\left(x+z\right)^2\left(x+y\right)\left(y+z\right)}\\S_c=\dfrac{1}{4\left(x+y\right)^2}-\dfrac{z}{2\prod\left(x+y\right)}=\dfrac{\left(z-x\right)\left(z-y\right)}{4\left(x+y\right)^2\left(y+z\right)\left(z+x\right)}\end{matrix}\right.\)

Dễ thấy \(S_a;S_b;S_c\) không phải là luôn không âm.Giả sử \(x=max\left\{x;y;z\right\}\).

Từ đó suy ra \(S_a\ge0\).Xét \(S_b+S_c=\dfrac{\left(y-z\right)^2}{4\left(x+y\right)^2\left(x+z\right)^2}\ge0,\forall x;y;z>0\)

Do đó \(VT=S_a\left(x-y\right)^2+\left[S_b\left(z-x\right)^2+S_c\left(x-y\right)^2\right]\ge0\)

Ta sẽ chứng minh \(S_b\left(z-x\right)^2+S_c\left(x-y\right)^2\ge0\) với \(S_b+S_c\ge0\)

và điều này đúng hay không e không biết, quan trọng là .. Chúc Mừng Năm Mới !!

Kinder
Xem chi tiết
Lê Thị Thục Hiền
13 tháng 6 2021 lúc 14:28

Có \(ab+bc+ac=abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=1\)

Áp dụng các bđt sau:Với x;y;z>0 có: \(\dfrac{1}{x+y+z}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)\) và \(\dfrac{1}{x+y}\le\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\) 

Có \(\dfrac{1}{a+3b+2c}=\dfrac{1}{\left(a+b\right)+\left(b+c\right)+\left(b+c\right)}\le\dfrac{1}{9}\left(\dfrac{1}{a+b}+\dfrac{2}{b+c}\right)\)\(\le\dfrac{1}{9}.\dfrac{1}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{2}{b}+\dfrac{2}{c}\right)=\dfrac{1}{36}\left(\dfrac{1}{a}+\dfrac{3}{b}+\dfrac{2}{c}\right)\)

CMTT: \(\dfrac{1}{b+3c+2a}\le\dfrac{1}{36}\left(\dfrac{1}{b}+\dfrac{3}{c}+\dfrac{2}{a}\right)\)

\(\dfrac{1}{c+3a+2b}\le\dfrac{1}{36}\left(\dfrac{1}{c}+\dfrac{3}{a}+\dfrac{2}{b}\right)\)

Cộng vế với vế => \(VT\le\dfrac{1}{36}\left(\dfrac{6}{a}+\dfrac{6}{b}+\dfrac{6}{c}\right)=\dfrac{1}{36}.6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\dfrac{1}{6}\)

Dấu = xảy ra khi a=b=c=3

Lê Thị Thục Hiền
13 tháng 6 2021 lúc 14:46

Có \(a+b=2\Leftrightarrow2\ge2\sqrt{ab}\Leftrightarrow ab\le1\)

\(E=\left(3a^2+2b\right)\left(3b^2+2a\right)+5a^2b+5ab^2+2ab\)

\(=9a^2b^2+6\left(a^3+b^3\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+4ab+5ab\left(a+b\right)+20ab\)

\(=9a^2b^2+48-18ab.2+4ab+5.2.ab+20ab\)

\(=9a^2b^2-2ab+48\)

Đặt \(f\left(ab\right)=9a^2b^2-2ab+48;ab\le1\), đỉnh \(I\left(\dfrac{1}{9};\dfrac{431}{9}\right)\)

Hàm đồng biến trên khoảng \(\left[\dfrac{1}{9};1\right]\backslash\left\{\dfrac{1}{9}\right\}\)

 \(\Rightarrow f\left(ab\right)_{max}=55\Leftrightarrow ab=1\)

\(\Rightarrow E_{max}=55\Leftrightarrow a=b=1\)

Vậy...

Nguyễn Việt Lâm
13 tháng 6 2021 lúc 14:46

2,

\(ab\le\dfrac{1}{4}\left(a+b\right)^2=1\Rightarrow0\le ab\le1\)

\(E=9a^2b^2+6\left(a^3+b^3\right)+5ab\left(a+b\right)+24ab\)

\(=9a^2b^2+6\left(a+b\right)^3-18ab\left(a+b\right)+5ab\left(a+b\right)+24ab\)

\(=9a^2b^2-2ab+48\)

Đặt \(ab=x\Rightarrow0\le x\le1\)

\(E=9x^2-2x+48=\left(x-1\right)\left(9x+7\right)+55\le55\)

\(E_{max}=55\) khi \(x=1\) hay \(a=b=1\)

CAO Thị Thùy Linh
Xem chi tiết
Đức Anh Gamer
Xem chi tiết
Kinder
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 7 2021 lúc 16:53

Do vai trò a;b;c như nhau, không mất tính tổng quát giả sử \(2\ge a\ge b\ge c\ge1\) 

\(\Rightarrow1\le\dfrac{a}{c}\le2\)

Đồng thời \(\Rightarrow\left(a-b\right)\left(b-c\right)\ge0\Leftrightarrow ab+bc\ge b^2+ac\) (1)

Chia 2 vế của (1) cho \(bc:\)

\(\Rightarrow\dfrac{a}{c}+1\ge\dfrac{b}{c}+\dfrac{a}{b}\)

Chia 2 vế của (1) cho \(ab\Rightarrow1+\dfrac{c}{a}\ge\dfrac{b}{a}+\dfrac{c}{b}\)

Cộng vế: \(\Rightarrow\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{b}\le\dfrac{a}{c}+\dfrac{c}{a}+2\)

Do đó:

\(S=\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=\left(\dfrac{a}{b}+\dfrac{b}{a}+\dfrac{b}{c}+\dfrac{c}{b}\right)+\dfrac{a}{c}+\dfrac{c}{a}+3\)

\(S\le2\left(\dfrac{a}{c}+\dfrac{c}{a}\right)+5\)

Đặt \(\dfrac{a}{c}=x\Rightarrow1\le x\le2\)

\(S\le2\left(x+\dfrac{1}{x}\right)+5=\dfrac{2x^2-5x+2}{x}+10=\dfrac{\left(2x-1\right)\left(x-2\right)}{x}+10\le10\)

\(S_{max}=10\) khi \(\left(a;b;c\right)=\left(1;1;2\right);\left(1;2;2\right)\) và các hoán vị