cho a,b,c>0 và abc=1. Tìm min:
\(Q=\dfrac{a^4}{\left(a^2+b^2\right)\left(a+b\right)}+\dfrac{b^4}{\left(b^2+c^2\right)\left(b+c\right)}+\dfrac{c^4}{\left(c^2+a^2\right)\left(c+a\right)}\)
Cho a,b,c>0 thỏa mãn a+b+c=3 CMR:
\(\dfrac{a^4}{\left(a+2\right)\left(b+2\right)}+\dfrac{b^4}{\left(b+2\right)\left(c+2\right)}+\dfrac{c^4}{\left(c+2\right)\left(a+2\right)}\ge\dfrac{1}{3}\)
cho a,b,c>0, CMR:
\(\left(a+b+\dfrac{1}{4}\right)^2+\left(b+c+\dfrac{1}{4}\right)^2+\left(c+a+\dfrac{1}{4}\right)^2\ge4\left(\dfrac{1}{\dfrac{1}{a}+\dfrac{1}{b}}+\dfrac{1}{\dfrac{1}{b}+\dfrac{1}{c}}+\dfrac{1}{\dfrac{1}{c}+\dfrac{1}{a}}\right)\)
Cho a,b,c>0
CMR : \(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)
Cho a,b,c là các số thực dương CMR : \(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4\left(a+b+c\right)}\)
Cho a,b,c là 3 số dương thỏa mãn abc = 1
Chứng minh
\(\dfrac{a^3}{\left(b+2\right)\left(c+3\right)}+\dfrac{b^3}{\left(c+2\right)\left(a+3\right)}+\dfrac{c^3}{\left(a+2\right)\left(b+3\right)}\ge\dfrac{1}{4}\)
Cho a,b,c>0 tm a+b+c=5. \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\).
C/m\(\dfrac{\sqrt{a}}{2+a}+\dfrac{\sqrt{b}}{2+b}+\dfrac{\sqrt{c}}{2+c}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)
Cho a,b,c > 0 và: a + b + c = 1. Chứng minh:
\(\dfrac{a}{\left(b+c\right)^2}+\dfrac{b}{\left(c+a\right)^2}+\dfrac{c}{\left(a+b\right)^2}\ge\dfrac{9}{4}\)
cho a,b,c dương thỏa mãn \(a+b+c=5\) và \(\sqrt{a}+\sqrt{b}+\sqrt{c}=3\). CMR: \(\dfrac{\sqrt{a}}{a+2}+\dfrac{\sqrt{b}}{b+2}+\dfrac{\sqrt{c}}{c+2}=\dfrac{4}{\sqrt{\left(a+2\right)\left(b+2\right)\left(c+2\right)}}\)