tim x,y biet \(\left(x-y\right)^{2014}+|x|+|y|=2\)
bai 1: Tim x biet
\(\hept{\begin{cases}x-y=\frac{3}{10}\\y\left(x-y\right)=-\frac{3}{50}\end{cases}}\)
bai 2: Tim x, y biet:
x+\(\left(-\frac{31}{12}\right)^2\)=\(\left(\frac{49}{12}\right)^2\)-x=y2
Bai 9: Tim x,y,z biet:
(x-1)2+(x+y)2+(xy-z)2=0
a) thay \(x-y=\frac{3}{10}\)vào \(y\left(x-y\right)=\frac{-3}{50}\)ta có\(\frac{3}{10}y=\frac{-3}{50}\)=>\(y=\frac{-3}{50}:\frac{3}{10}=\frac{-1}{5}\)=>\(x-y=\frac{3}{10}\Rightarrow x=\frac{3}{10}+\frac{-1}{5}=\frac{1}{10}\)
hôm sau mik giải tip cho
tim x,y,z biet: \(\left(x+1\right)^2+\left(y+1\right)^2+\left(x-y\right)^2=2\)
thang king of king kia, chua hoc hang dang thuc a
thang Vinh ngu vay khong biet
tim x,y,z biet \(\sqrt{\left(x-\sqrt{5}\right)^2}+\sqrt{\left(y+\sqrt{3}\right)^2}+\left|x-y-z\right|\)
tim x,y biet
a)\(\left(x-y-2\right)^2+7=\frac{14}{\left|y-1\right|+\left|y-3\right|}\)
1 tim x \(2014.\left|x-12\right|+\left(x-12\right)^2=2013.\left|12-x\right|\)\(x\)|
2 chung minh \(8^7-2^{18}⋮14\)
3 tim x,y,z biet 4x=7y=3z va x+y+z=61
4 tim a,b,c biet \(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\)vs \(a-b=15\)
giup mk nha moi nguoi,lm dc cang nhiu cang tot
câu 1: Câu hỏi của Vương Ái Như - Toán lớp 7 - Học toán với OnlineMath
câu 2:
Ta có: \(8^7-2^{18}=2^{21}-2^{18}=2^{17}.\left(2^4-2\right)=2^{17}.14⋮14\)
câu 3:
\(4x=7y=3x\Rightarrow\frac{4x}{84}=\frac{7y}{84}=\frac{3z}{84}\Rightarrow\frac{x}{21}=\frac{y}{12}=\frac{z}{28}=\frac{x+y+z}{21+12+28}=\frac{61}{61}=1\)
\(\Rightarrow x=21,y=12,z=28\)
câu 4:
\(\frac{1}{2}a=\frac{2}{3}b=\frac{3}{4}c\Rightarrow\frac{a}{2}=\frac{2b}{3}=\frac{3c}{4}\Rightarrow\frac{a}{2.6}=\frac{2b}{3.6}=\frac{3c}{4.6}\Rightarrow\frac{a}{12}=\frac{b}{9}=\frac{c}{8}=\frac{a-b}{12-9}=\frac{15}{3}=5\)
\(\Rightarrow a=5.12=60,b=9.5=45,c=8.5=40\)
tim x biet
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y-\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
Bài này chỉ yêu cầu tìm x thôi đúng ko bạn .
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y-\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
\(\Rightarrow\hept{\begin{cases}x-\sqrt{2}=0\\y-\sqrt{2}=0\\x+y+z=0\end{cases}\Rightarrow x=\sqrt{2}}\)
cho x,y,z,a là các số dương;\(a^2=b+4028và\left\{{}\begin{matrix}x+y+z=a\\x^2+y^2+z^2=b\end{matrix}\right.\).tính:
S=\(x\sqrt{\dfrac{\left(2014+y^2\right)\left(2014+z^2\right)}{2014+x^2}}\)+\(y\sqrt{\dfrac{\left(2014+z^2\right)\left(2014+x^2\right)}{2014+y^2}}\)+z\(\sqrt{\dfrac{\left(2014+x^2\right)\left(2014+y^2\right)}{2014+z^2}}\)
Ta có \(\left(x+y+z\right)^2-x^2-y^2-z^2=a^2-b\Rightarrow2\left(xy+yz+zx\right)=2048\Rightarrow xy+yz+zx=2014\)
với xy+yz+zx=2014, thay vào, ta có A=\(\sum x\sqrt{\dfrac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}=\sum x\sqrt{\dfrac{\left(y+z\right)^2\left(y+x\right)\left(z+x\right)}{\left(x+z\right)\left(x+y\right)}}=\sum x\left(y+z\right)=2\left(xy+yz+zx\right)=2048\)
cho x,y,z\(\ge\sqrt{2014}\) thỏa mãn
\(\sqrt{\left(x^2-2014\right)\left(y^2-2014\right)}+\sqrt{\left(y^2-2014\right)\left(z^2-2014\right)}+\sqrt{\left(z^2-2014\right)\left(x^2-2014\right)}=2014\)
Tính \(A=xyz\left(\dfrac{\sqrt{x^2-2014}}{x^2}+\dfrac{\sqrt{y^2-2014}}{y^2}+\dfrac{\sqrt{z^2-2014}}{z^2}\right)\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2014}=a\left(a\ge0\right)\\\sqrt{y^2-2014}=b\left(b\ge0\right)\\\sqrt{z^2-2014}=c\left(c\ge0\right)\end{matrix}\right.\)
\(\Rightarrow ab+bc+ca=2014\)
Ta có: \(\sqrt{x^2-2014}=a\)
\(\Leftrightarrow x^2-2014=a^2\)
\(\Rightarrow x^2=a^2+2014=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
Tương tự, ta có:
\(y^2=\left(b+c\right)\left(b+a\right)\)
\(z^2=\left(c+a\right)\left(c+b\right)\)
Xét \(A=xyz\left(\dfrac{\sqrt{x^2-2014}}{x^2}+\dfrac{\sqrt{y^2-2014}}{y^2}+\dfrac{\sqrt{z^2-2014}}{z^2}\right)\)
\(=\sqrt{\left(a+b\right)\left(a+c\right)}\times\sqrt{\left(b+c\right)\left(b+c\right)}\times\sqrt{\left(c+a\right)\left(c+b\right)}\)
\(\times\left[\dfrac{a}{\left(a+b\right)\left(a+c\right)}+\dfrac{b}{\left(b+c\right)\left(b+a\right)}+\dfrac{c}{\left(c+a\right)\left(c+b\right)}\right]\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\times\dfrac{a\left(b+c\right)\times b\left(c+a\right)\times c\left(b+a\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=2\left(ab+bc+ac\right)=4028\)
Giup mk vs mk sap phai nop roi
\(\left(2\times x-y\right)^5+\left(2\times y-8\right)^{2014}=0\).Tim x,y
Ta có : a mũ chẵn \(\ge\)0.
=>\(2\times y-8=0\)
=> 2 x y = 8
=> y = 4
Ta có : 2x-y = 0.
=> 2x=y=8
=>x= 4