cho x,y,z\(\ge\sqrt{2014}\) thỏa mãn
\(\sqrt{\left(x^2-2014\right)\left(y^2-2014\right)}+\sqrt{\left(y^2-2014\right)\left(z^2-2014\right)}+\sqrt{\left(z^2-2014\right)\left(x^2-2014\right)}=2014\)
Tính \(A=xyz\left(\dfrac{\sqrt{x^2-2014}}{x^2}+\dfrac{\sqrt{y^2-2014}}{y^2}+\dfrac{\sqrt{z^2-2014}}{z^2}\right)\)
Đặt \(\left\{{}\begin{matrix}\sqrt{x^2-2014}=a\left(a\ge0\right)\\\sqrt{y^2-2014}=b\left(b\ge0\right)\\\sqrt{z^2-2014}=c\left(c\ge0\right)\end{matrix}\right.\)
\(\Rightarrow ab+bc+ca=2014\)
Ta có: \(\sqrt{x^2-2014}=a\)
\(\Leftrightarrow x^2-2014=a^2\)
\(\Rightarrow x^2=a^2+2014=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\)
Tương tự, ta có:
\(y^2=\left(b+c\right)\left(b+a\right)\)
\(z^2=\left(c+a\right)\left(c+b\right)\)
Xét \(A=xyz\left(\dfrac{\sqrt{x^2-2014}}{x^2}+\dfrac{\sqrt{y^2-2014}}{y^2}+\dfrac{\sqrt{z^2-2014}}{z^2}\right)\)
\(=\sqrt{\left(a+b\right)\left(a+c\right)}\times\sqrt{\left(b+c\right)\left(b+c\right)}\times\sqrt{\left(c+a\right)\left(c+b\right)}\)
\(\times\left[\dfrac{a}{\left(a+b\right)\left(a+c\right)}+\dfrac{b}{\left(b+c\right)\left(b+a\right)}+\dfrac{c}{\left(c+a\right)\left(c+b\right)}\right]\)
\(=\left(a+b\right)\left(a+c\right)\left(b+c\right)\times\dfrac{a\left(b+c\right)\times b\left(c+a\right)\times c\left(b+a\right)}{\left(a+b\right)\left(a+c\right)\left(b+c\right)}\)
\(=2\left(ab+bc+ac\right)=4028\)