Chứng tỏ rằng, với mọi số tự nhiên n thì phân số 2n+5/2n+3 là phân số tối giản.
Chứng tỏ rằng với mọi số tự nhiên n thì phân số n+2 phần 2n+3 tối giản
Đặt \(\left(n+2,2n+3\right)=d\)
Suy ra \(\hept{\begin{cases}n+2⋮d\\2n+3⋮d\end{cases}}\Rightarrow2\left(n+2\right)-\left(2n+3\right)=1⋮d\Rightarrow d=1\).
Suy ra đpcm.
a, Chứng minh rằng với mọi số tự nhiên n thì \(\dfrac{n+1}{2n+3}\) là phân số tối giản
b, Chứng minh rằng với mọi số tự nhiên a, b thì \(\dfrac{7a+5b}{9a+4b}\) là phân số tối giản
a/
Gọi $d=ƯCLN(n+1, 2n+3)$
$\Rightarrow n+1\vdots d; 2n+3\vdots d$
$\Rightarrow 2n+3-2(n+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
Vậy $\frac{n+1}{2n+3}$ là phân số tối giản với mọi số tự nhiên $n$
b/
Cho $a=2, b=2$ thì phân số đã cho bằng $\frac{24}{26}$ không là phân số tối giản bạn nhé.
Bạn xem lại đề.
chứng tỏ rằng các phân số tối giản với mọi số tự nhiên n : n+1/2n+3
Gọi ƯCLN (n+1,2n+3) = d (d∈N*)
=> n+1 ⋮ d => 2(n+1) ⋮ d => 2n+2 ⋮ d
2n+3 ⋮ d
=>(2n+3)-(2n+2)⋮d => d=1
=> ƯCLN(n+1,2n+3) = 1
=> Phân số n+1/2n+3 tối giản (đpcm)
Chướng tỏ rằng với mọi số tự nhiên n thì phân số n+2/2n+3 tối giản
Gọi d=ƯCLN(2n+3;n+2)
=>2n+3-2n-4 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>n+2/2n+3 là phân số tối giản
Gọi (n+2,2n+3)=d
n+2⋮d =>2(n+2)⋮d => 2n+4⋮d
2n+3⋮d
=>(2n+4)-(2n+3)⋮d
(=)1⋮d
(=)d=1
vậy n+2/2n+3 tối giản.
gọi d=ƯCLN( 2n+3;n+2)
suy ra 2n+3-2n-4chia hết cho d
suy ra -1 chia hết cho d
suy ra d=1
suy ra n+2/2n+3 tối giản rồi
Chứng tỏ rằng phân số 2n+3 /4n+8 tối giản với mọi số tự nhiên n
1.chứng tỏ phân số 2n+5/25+1 là 1 phân số tối giản với mọi số tự nhiên n.
Bạn xem lại đề. Mẫu số không hợp lý.
Chứng tỏ rằng các phân số sau là phân số tối giản với mọi số tự nhiên n
A=2n+3/4n+5
giúp mình nhé các bạn
Gọi UCLN(2n + 3; 4n + 5) là d (d thuộc N*)
=> 2n + 3 chia hết cho d => 4n + 6 chia hết cho d => 4n + 5 + 1 chia hết cho d
và 4n + 5 chia hết cho d
=> 1 chia hết cho d
=> d = 1 (Vì d thuộc N*)
=> UWCLN(2n + 3; 4n + 5) = 1
=> 2n + 3/4n + 5 là phân số tối giản với mọi số tự nhiên n
Vậy,........
Bài 1: Chứng tỏ rằng phân số:
A=\(\frac{n+3}{2n+5}\)là phân số tối giản với mọi số tự nhiên n thuộc N
Gọi d là UCLN(n+3,2n+5)
=> n+3:d , 2n+5:d
=>2n+6:d , 2n+5:d
=>2n+6 - 2n+5 :d
=> 1: d
Vậy n+3/2n+5 là phan so toi gian
Minh nhanh nhat nen cho minh nhe
gọi \(\text{Ư}CLN_{\left(n+3;2n+5\right)}=d\)
\(\Rightarrow\hept{\begin{cases}n+3⋮d\\2n+5⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+5⋮d\end{cases}\Rightarrow}\hept{\begin{cases}2n+6⋮d\\2n+5⋮d\end{cases}}}\)
\(\Rightarrow2n+6-\left(2n+5\right)⋮d\)
\(\Rightarrow2n+6-2n-5⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
vậy phân số \(\frac{n+3}{2n+5}\) là phân số tối giản
a) Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
b) Chứng minh rằng với mọi số tự nhiên n, A = 2n+1/2n+3 là phân số tối giản