Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
lưu thị ý nhi
Xem chi tiết
Trần Thị Bích Ngọc
4 tháng 10 2015 lúc 16:03

<=>x(x^2-1)=0

<=>x=0 hoặc x^2-1=0

<=>x=0 hoặc x^2=1

<=>x=0 hoặc x=1 hoặc x=-1

 

ILoveMath
Xem chi tiết
Hồng Phúc
28 tháng 8 2021 lúc 16:46

\(x^4+x^2+4x-3=0\)

\(\Leftrightarrow x^4+2x^2+1-x^2+4x-4=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x^2+1-x+2\right)\left(x^2+1+x-2\right)=0\)

\(\Leftrightarrow\left(x^2-x+3\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow x^2+x-1=0\)

\(\Leftrightarrow x=\dfrac{-1\pm\sqrt{5}}{2}\)

Hồng Phúc
28 tháng 8 2021 lúc 19:35

Cách khác: (Tổng quát)

\(x^4+x^2+4x-3=0\)

\(\Leftrightarrow x^4+2x^2y+y^2-2x^2y-y^2+x^2+4x-3=0\)

\(\Leftrightarrow\left(x^2+y\right)^2-\left(2y-1\right)\left[x^2-\dfrac{4x}{2y-1}+\dfrac{4}{\left(2y-1\right)^2}\right]+\dfrac{4}{2y-1}-y^2-3=0\)

\(\Leftrightarrow\left(x^2+y\right)^2-\left(2y-1\right)\left(x-\dfrac{2}{2y-1}\right)^2+\dfrac{4}{2y-1}-y^2-3=0\left(1\right)\)

Ta mong muốn: \(\dfrac{4}{2y-1}-y^2-3=0\)

\(\Leftrightarrow2y^3-y^2-6y+7=0\)

\(\Leftrightarrow y=1\)

Khi đó: 

\(\left(1\right)\Leftrightarrow\left(x^2+y\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x^2-x+3\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow x^2+x-1=0\)

\(\Leftrightarrow x=\dfrac{-1\pm\sqrt{5}}{2}\)

Nguyễn Lê Phước Thịnh
28 tháng 8 2021 lúc 22:53

\(x^4+x^2+4x-3=0\)

\(\Leftrightarrow x^4+2x^2+1-x^2+4x-4=0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(x-2\right)^2=0\)

\(\Leftrightarrow\left(x^2+1-x+2\right)\left(x^2+1+x-2\right)=0\)

\(\Leftrightarrow x^2+x-1=0\)

\(\text{Δ}=1^2-4\cdot1\cdot\left(-1\right)=5\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là: 

\(\left\{{}\begin{matrix}x_1=\dfrac{-1-\sqrt{5}}{2}\\x_2=\dfrac{-1+\sqrt{5}}{2}\end{matrix}\right.\)

Tâm Cao
Xem chi tiết
Akai Haruma
30 tháng 1 2021 lúc 0:39

Lời giải:ĐK: $\cos 3x>\frac{-1}{2}$

PT $\Rightarrow 4\sin ^2\frac{x}{2}-\sqrt{3}\cos 2x-1-2\cos ^2(x-\frac{3\pi}{4})=0$

$\Leftrightarrow 2(1-\cos x)-\sqrt{3}\cos 2x-2+[1-2\cos ^2(x-\frac{3\pi}{4})]=0$

$\Leftrightarrow -2\cos x-\sqrt{3}\cos 2x-cos (2x-\frac{3\pi}{2})=0$

$\Leftrightarrow 2\cos x+\sqrt{3}\cos 2x+\cos (2x-\frac{3\pi}{2})=0$

$\Leftrightarrow 2\cos x+\sqrt{3}\cos 2x+\sin 2x=0$

$\Leftrightarrow \cos x+\frac{\sqrt{3}}{2}\cos 2x+\frac{1}{2}\sin 2x=0$

$\Leftrightarrow \cos x-\cos (2x+\frac{5\pi}{6})=0

$\Leftrightarrow \cos x=\cos (2x+\frac{5\pi}{6})$

$\Rightarrow x+2k\pi =2x+\frac{5}{6}\pi$ hoặc $-x+2k\pi =2x+\frac{5}{6}\pi$

Vậy......

Nguyễn Minh Chiến
Xem chi tiết
Hồng Phúc
2 tháng 2 2021 lúc 17:08

1.

\(x^4-6x^2-12x-8=0\)

\(\Leftrightarrow x^4-2x^2+1-4x^2-12x-9=0\)

\(\Leftrightarrow\left(x^2-1\right)^2=\left(2x+3\right)^2\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-1=2x+3\\x^2-1=-2x-3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-2x-4=0\\x^2+2x+2=0\end{matrix}\right.\)

\(\Leftrightarrow x=1\pm\sqrt{5}\)

Hồng Phúc
2 tháng 2 2021 lúc 17:22

3.

ĐK: \(x\ge-9\)

\(x^4-x^3-8x^2+9x-9+\left(x^2-x+1\right)\sqrt{x+9}=0\)

\(\Leftrightarrow\left(x^2-x+1\right)\left(\sqrt{x+9}+x^2-9\right)=0\)

\(\Leftrightarrow\sqrt{x+9}+x^2-9=0\left(1\right)\)

Đặt \(\sqrt{x+9}=t\left(t\ge0\right)\Rightarrow9=t^2-x\)

\(\left(1\right)\Leftrightarrow t+x^2+x-t^2=0\)

\(\Leftrightarrow\left(x+t\right)\left(x-t+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-t\\x=t-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\sqrt{x+9}\\x=\sqrt{x+9}-1\end{matrix}\right.\)

\(\Leftrightarrow...\)

Hồng Phúc
2 tháng 2 2021 lúc 17:14

2.

ĐK: \(x\ne\dfrac{2\pm\sqrt{2}}{2};x\ne\dfrac{-2\pm\sqrt{2}}{2}\)

\(\dfrac{x}{2x^2+4x+1}+\dfrac{x}{2x^2-4x+1}=\dfrac{3}{5}\)

\(\Leftrightarrow\dfrac{1}{2x+\dfrac{1}{x}+4}+\dfrac{1}{2x+\dfrac{1}{x}-4}=\dfrac{3}{5}\)

Đặt \(2x+\dfrac{1}{x}+4=a;2x+\dfrac{1}{x}-4=b\left(a,b\ne0\right)\)

\(pt\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}=\dfrac{3}{5}\left(1\right)\)

Lại có \(a-b=8\Rightarrow a=b+8\), khi đó:

\(\left(1\right)\Leftrightarrow\dfrac{1}{b+8}+\dfrac{1}{b}=\dfrac{3}{5}\)

\(\Leftrightarrow\dfrac{2b+8}{\left(b+8\right)b}=\dfrac{3}{5}\)

\(\Leftrightarrow10b+40=3\left(b+8\right)b\)

\(\Leftrightarrow\left[{}\begin{matrix}b=2\\b=-\dfrac{20}{3}\end{matrix}\right.\)

TH1: \(b=2\Leftrightarrow...\)

TH2: \(b=-\dfrac{20}{3}\Leftrightarrow...\)

Nguyễn Thị Huyền Diệp
Xem chi tiết
Lê Hương Giang
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 1 2021 lúc 22:05

a) Ta có: \(\left(x^2-16\right)\left(\dfrac{x}{4}-\dfrac{4x+5}{3}\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(\dfrac{3x-16x-20}{12}\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\cdot\left(-13x-20\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\\-13x-20=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\-13x=20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=\dfrac{-20}{13}\end{matrix}\right.\)

Vậy: \(x\in\left\{4;-4;\dfrac{-20}{13}\right\}\)

b) Ta có: \(\left(4x-1\right)\left(x+5\right)=x^2-25\)

\(\Leftrightarrow\left(4x-1\right)\left(x+5\right)-\left(x^2-25\right)=0\)

\(\Leftrightarrow\left(4x-1\right)\left(x+5\right)-\left(x+5\right)\left(x-5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(4x-1-x+5\right)=0\)

\(\Leftrightarrow\left(x+5\right)\left(3x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{4}{3}\end{matrix}\right.\)

Vậy: \(x\in\left\{-5;\dfrac{-4}{3}\right\}\)

c) Ta có: \(x\left(x+3\right)^3-\dfrac{x}{4}\cdot\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\cdot\left[x\left(x+3\right)^2-\dfrac{1}{4}x\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left[x\left(x^2+6x+9\right)-\dfrac{1}{4}x\right]=0\)

\(\Leftrightarrow\left(x+3\right)\left(x^3+6x^2+9x-\dfrac{1}{4}x\right)=0\)

\(\Leftrightarrow\left(x+3\right)\cdot x\cdot\left(x^2+6x+\dfrac{35}{4}\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(x^2+6x+9-\dfrac{1}{4}\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left[\left(x+3\right)^2-\dfrac{1}{4}\right]=0\)

\(\Leftrightarrow x\left(x+3\right)\left(x+3-\dfrac{1}{2}\right)\left(x+3+\dfrac{1}{2}\right)=0\)

\(\Leftrightarrow x\left(x+3\right)\left(x+\dfrac{5}{2}\right)\left(x+\dfrac{7}{2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+\dfrac{5}{2}=0\\x+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{0;-3;-\dfrac{5}{2};-\dfrac{7}{2}\right\}\)

Ngânn Uyênnn
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 2 2023 lúc 22:51

a: =>x^2+4x-4x+1=0

=>x^2+1=0

=>Loại

b: =>2x-6+4=2x+2

=>-2=2(loại)

c: =>2(x+3)-2x-1=1

=>6-1=1

=>5=1(loại)

d =>x+3=0

=>x=-3(loại)

e: =>x^2-3x^2+3x-3x-2=0

=>-2x^2-2=0

=>x^2+1=0

=>Loại

Nguyễn Thị Diễm Quỳnh
Xem chi tiết
Nguyễn Huy Thắng
7 tháng 8 2017 lúc 1:00

a)Dat \(x^2-4x+3=a;x^2-7x+6=b \Rightarrow a+b=2x^2-11x+9\)

....

slyn
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2022 lúc 20:51

a: \(\Leftrightarrow2x\left(x^2+2x+5\right)=0\)

=>x=0

b: \(\Leftrightarrow\dfrac{x}{x-1}-\dfrac{x+1}{x-3}=\dfrac{1}{2}\)

\(\Leftrightarrow x^2-4x+3=2x\left(x-3\right)-2\left(x^2-1\right)\)

\(\Leftrightarrow x^2-4x+3=2x^2-6x-2x^2+2=-6x+2\)

\(\Leftrightarrow x^2+2x+1=0\)

=>x=-1(nhận)

ILoveMath đã xóa
Nguyễn Ngọc Huy Toàn
22 tháng 2 2022 lúc 20:55

\(\Leftrightarrow2x\left(x^2+2x+5\right)=0\)

\(\Leftrightarrow x=0\) ( vì \(x^2+2x+5>0;\forall x\)

b.\(\Leftrightarrow\dfrac{x\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\)

\(ĐK:x\ne1;3;4\)

\(\Leftrightarrow\dfrac{x}{\left(x-1\right)}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\)

\(\Leftrightarrow\dfrac{x\left(x-3\right)-\left(x-1\right)\left(x-3\right)}{\left(x-1\right)\left(x-3\right)}=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x-3\right)}\)

\(\Leftrightarrow x\left(x-3\right)-\left(x-1\right)\left(x-3\right)=\left(x+1\right)\left(x-1\right)\)

\(\Leftrightarrow x^2-3x-\left(x^2-3x-x+3\right)=x^2-1\)

\(\Leftrightarrow x^2-3x-x^2+4x-3=x^2-1\)

\(\Leftrightarrow x^2+x-2=0\)

\(\Leftrightarrow x^2-x+2x-2=0\)

\(\Leftrightarrow x\left(x-1\right)+2\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(ktm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)

Vậy \(S=\left\{-2\right\}\)

ILoveMath đã xóa
ILoveMath
22 tháng 2 2022 lúc 20:55

\(a,2x^3+4x^2+10x=0\\ \Leftrightarrow2x\left(x^2+2x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x=0\\x^2+2x+5=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x^2+2x+1\right)+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)^2+4=0\left(vô..lí\right)\end{matrix}\right.\)

\(b,ĐKXĐ:\left\{{}\begin{matrix}x\ne1\\x\ne3\\x\ne4\end{matrix}\right.\\ \dfrac{x^2-4x}{x^2-5x+4}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\\ \Leftrightarrow\dfrac{x\left(x-4\right)}{\left(x-1\right)\left(x-4\right)}-\dfrac{1}{2}=\dfrac{x+1}{x-3}\\ \Leftrightarrow\dfrac{x}{x-1}-\dfrac{1}{2}-\dfrac{x+1}{x-3}=0\\ \Leftrightarrow\dfrac{2x\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\dfrac{\left(x-1\right)\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}-\dfrac{2\left(x+1\right)\left(x-1\right)}{2\left(x-1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2-6x}{2\left(x-1\right)\left(x-3\right)}-\dfrac{x^2-4x+3}{2\left(x-1\right)\left(x-3\right)}-\dfrac{2x^2-2}{\left(x-1\right)\left(x-3\right)}=0\)

\(\Leftrightarrow\dfrac{2x^2-6x-x^2+4x-3-2x^2+2}{2\left(x-1\right)\left(x-3\right)}=0\)

\(\Rightarrow-x^2-2x-1=0\)

\(\Leftrightarrow x^2+2x+1=0\\ \Leftrightarrow\left(x+1\right)^2=0\\ \Leftrightarrow x+1=0\\ \Leftrightarrow x=-1\left(tm\right)\)