Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hoang Phương Nguyên
Xem chi tiết
Nguyễn Hoàng Minh
24 tháng 10 2021 lúc 16:51

\(a,Sửa:2021x-1+2022x\left(1-2021x\right)=0\\ \Leftrightarrow\left(2021x-1\right)\left(1-2022x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2021}\\x=\dfrac{1}{2022}\end{matrix}\right.\)

Thư Vũ
Xem chi tiết
Nguyễn Hoàng Minh
2 tháng 12 2021 lúc 7:54

\(1,\left(x+2022\right)\left(x-1\right)=x^2+2021x-2022\left(B\right)\\ 2,\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\left(A\right)\)

Kiên Đặng
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 2 2021 lúc 22:26

ĐKXĐ: \(x\notin\left\{-\dfrac{1}{2018};-\dfrac{2}{2019};-\dfrac{1}{505};\dfrac{-5}{2021}\right\}\)

Ta có: \(\dfrac{1}{2018x+1}-\dfrac{1}{2019x+2}=\dfrac{1}{2020x+4}-\dfrac{1}{2021x+5}\)

\(\Leftrightarrow\dfrac{2019x+2-2018x-1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{2021x+5-2020x-4}{\left(2020x+4\right)\left(2021x+5\right)}\)

\(\Leftrightarrow\dfrac{x+1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{x+1}{\left(2020x+4\right)\left(2021x+5\right)}\)

\(\Leftrightarrow\dfrac{x+1}{\left(2018x+1\right)\left(2019x+2\right)}-\dfrac{x+1}{\left(2020x+4\right)\left(2021x+5\right)}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{\left(2018x+1\right)\left(2019x+2\right)}-\dfrac{1}{\left(2020x+4\right)\left(2021x+5\right)}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\\dfrac{1}{\left(2018x+1\right)\left(2019x+2\right)}=\dfrac{1}{\left(2020x+4\right)\left(2021x+5\right)}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\\left(2018x+1\right)\left(2019x+2\right)=\left(2020x+4\right)\left(2021x+5\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\4074342x^2+6055x+2=4082420x^2+18184x+20\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-1\left(nhận\right)\\-8078x^2-12129x-18=0\end{matrix}\right.\)

Ta có: \(-8078x^2-12129x-18=0\)(2)

\(\Delta=\left(-12129\right)^2-4\cdot\left(-8078\right)\cdot\left(-18\right)=146531025\)

Vì \(\Delta>0\) nên phương trình (2) có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{12129-12105}{2\cdot\left(-8078\right)}=\dfrac{-6}{4039}\left(nhận\right)\\x_2=\dfrac{12129+12105}{2\cdot\left(-8078\right)}=-\dfrac{3}{2}\left(nhận\right)\end{matrix}\right.\)

Vậy: \(S=\left\{-1;\dfrac{-6}{4039};\dfrac{-3}{2}\right\}\)

HLinhh
Xem chi tiết
HT.Phong (9A5)
3 tháng 9 2023 lúc 11:59

a) \(\left(\dfrac{1}{2}+\dfrac{1}{6}+...+\dfrac{1}{90}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{9\cdot10}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow\left(1-\dfrac{1}{2}+\dfrac{1}{2}-...+\dfrac{1}{9}-\dfrac{1}{10}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow\left(1-\dfrac{1}{10}\right)\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow\dfrac{9}{10}\cdot100-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow90-\left[\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)=90-89\)

\(\Rightarrow\dfrac{5}{2}:\left(x+\dfrac{103}{50}\right)=1\)

\(\Rightarrow x+\dfrac{103}{50}=\dfrac{5}{2}\)

\(\Rightarrow x=\dfrac{11}{25}\)

b) \(x\cdot9,85+x\cdot0,15=0,1\)

\(\Rightarrow x\cdot\left(9,85+0,15\right)=0,1\)

\(\Rightarrow x\cdot10=0,1\)

\(\Rightarrow x=\dfrac{0,1}{10}\)

\(\Rightarrow x=0,01\)

c) \(\dfrac{2}{5}+2022x=\dfrac{4}{10}\)

\(\Rightarrow\dfrac{2}{5}+2022x=\dfrac{2}{5}\)

\(\Rightarrow2022x=\dfrac{2}{5}-\dfrac{2}{5}\)

\(\Rightarrow2022x=0\)

\(\Rightarrow x=\dfrac{0}{2022}\)

\(\Rightarrow x=0\)

Nguyễn Đức Trí
3 tháng 9 2023 lúc 12:07

a) \(\left(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}\right).100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\left(1\right)\)

Ta có :

\(\dfrac{1}{2}+\dfrac{1}{6}+\dfrac{1}{12}+...+\dfrac{1}{90}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)

\(\left(1\right)\Rightarrow\dfrac{9}{10}.100-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right]:\dfrac{1}{2}=89\)

\(\Rightarrow90-\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right].2=89\)

\(\Rightarrow\left[\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)\right].2=90-89\)

\(\Rightarrow\dfrac{5}{2}:\left(x+\dfrac{206}{100}\right)=\dfrac{1}{2}\)

\(\Rightarrow x+\dfrac{206}{100}=\dfrac{5}{2}:\dfrac{1}{2}\)

\(\Rightarrow x+\dfrac{103}{50}=\dfrac{5}{2}.\dfrac{2}{1}\)

\(\Rightarrow x+\dfrac{103}{50}=5\)

\(\Rightarrow x=5-\dfrac{103}{50}\)

\(\Rightarrow x=\dfrac{250}{50}-\dfrac{103}{50}\)

\(\Rightarrow x=\dfrac{147}{50}\)

NGUYỄN GIA QUÂN
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2023 lúc 20:56

loading...

NGUYỄN GIA QUÂN
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2023 lúc 20:34

a: \(2022^{x-2021}+3=\left(7-5\right)^2\)

=>\(2022^{x-2021}+3=4\)

=>\(2022^{x-2021}=1\)

=>x-2021=0

=>x=2021

b: \(\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=795\)

=>\(30x+\left(1+2+3+...+30\right)=795\)

=>\(30x+\dfrac{30\cdot31}{2}=795\)

=>\(30x=795-31\cdot15=330\)

=>x=11

NGUYỄN GIA QUÂN
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2023 lúc 20:56

loading...

Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 3 2022 lúc 9:57

\(=\lim\limits_{x\rightarrow0}\dfrac{\sqrt[3]{x+1}\left(\sqrt[]{2022x^2+x+1}-1\right)+\sqrt[3]{x+1}-1}{x}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{\dfrac{\sqrt[3]{x+1}.\left(2022x^2+x\right)}{\sqrt[]{2022x^2+x+1}+1}+\dfrac{x}{\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1}}{x}\)

\(=\lim\limits_{x\rightarrow0}\left(\dfrac{\sqrt[3]{x+1}\left(2022x+1\right)}{\sqrt[]{2022x^2+x+1}+1}+\dfrac{1}{\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{x+1}+1}\right)\)

\(=\dfrac{1}{1+1}+\dfrac{1}{1+1+1}=\dfrac{1}{2}+\dfrac{1}{3}=\dfrac{5}{6}\)

nguyễn bảo thuận
Xem chi tiết
Xyz OLM
23 tháng 7 2021 lúc 9:48

Khi x = 2021

=> 2022 = x + 1

Khi đó E = x10 - 2022x9 + 2022x8 - ... + 2022x2 - 2022x + 2022

= x10 - (x + 1)x9 + (x + 1)x8 - .... + (x + 1)x2 - (x + 1)x + (x + 1) 

= x10 - x10 - x9 + x9 + x8 - ... + x3 + x2 - x2 - x + x + 1

= 1 

Khách vãng lai đã xóa