Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Đông Thành
Xem chi tiết
NDT Channel
Xem chi tiết
Tuấn Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2022 lúc 23:15

\(=\dfrac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}\cdot\dfrac{\sqrt{x}+2}{\sqrt{x}+16}=\dfrac{\left(x+16\right)\left(\sqrt{x}+2\right)}{\left(x-16\right)\left(\sqrt{x}+16\right)}\)

Cuong Vu manh
Xem chi tiết
Capheny Bản Quyền
17 tháng 9 2020 lúc 11:36

Tính ngoặc tròn 

\(4\cdot8-16\cdot2\) 

\(=32-32\) 

\(=0\)                                    

Vậy tích trên bằng 0 ( vì có 1 thừa số = 0 ) 

Khách vãng lai đã xóa
Me
17 tháng 9 2020 lúc 12:39

                                                 Bài giải

1 x 2 x 3 x 4 x 5 x 6 x 7 x ( 4 x 8 - 16 x 2 ) x 15 x 16 x 17 ... x 2019 x 2020 

= 1 x 2 x 3 x 4 x 5 x 6 x 7 x ( 32 - 32 ) x 15 x 16 x 17 ... x 2019 x 2020 

= 1 x 2 x 3 x 4 x 5 x 6 x 7 x 0 x 15 x 16 x 17 ... x 2019 x 2020 

= 0

Khách vãng lai đã xóa
Cuong Vu manh
17 tháng 9 2020 lúc 19:47

chắt do tui quên tính 4 x 8 - 16 x 2 nên mới vậy :v

Khách vãng lai đã xóa
Lucky
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 7 2020 lúc 9:49

Ta có: \(B=\left(\frac{\sqrt{x}}{\sqrt{x}+4}+\frac{4}{\sqrt{x}-4}\right):\frac{x+16}{\sqrt{x}+2}\)

\(=\left(\frac{\sqrt{x}\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+4\right)\left(\sqrt{x}-4\right)}+\frac{4\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\right)\cdot\frac{\sqrt{x}+2}{x+16}\)

\(=\frac{x-4\sqrt{x}+4\sqrt{x}+16}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}\cdot\frac{\sqrt{x}+2}{x+16}\)

\(=\frac{x+16}{x-16}\cdot\frac{\sqrt{x}+2}{x+16}\)

\(=\frac{\sqrt{x}+2}{x-16}\)

hiên nguyễn đỗ hoang duo...
Xem chi tiết
pokemon pikachu
13 tháng 11 2017 lúc 12:28

https://www.youtube.com/watch?v=cFZDEMTQQCs

hiên nguyễn đỗ hoang duo...
13 tháng 11 2017 lúc 12:30

j thế bạn

khánh chi nguyễn
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
31 tháng 8 2023 lúc 0:03

`#040911`

a,

\(\dfrac{1}{2}\cdot\left(x-4\right)-\dfrac{1}{4}\cdot\left(x-\dfrac{4}{3}\right)=2\cdot\left(x-\dfrac{1}{2}\right)\)

\(\Rightarrow\dfrac{1}{2}x-2-\dfrac{1}{4}x+\dfrac{1}{3}=2x-1\\\Rightarrow\left(\dfrac{1}{2}x-\dfrac{1}{4}x-2x\right)=2-\dfrac{1}{3}-1\\ \Rightarrow-\dfrac{7}{4}x=\dfrac{2}{3}\\ \Rightarrow x=\dfrac{2}{3}\div\left(-\dfrac{7}{4}\right)\\ \Rightarrow x=-\dfrac{8}{21}\)

Vậy, \(x=-\dfrac{8}{21}\)

b,

\(\dfrac{3}{4}-\left(x-\dfrac{1}{2}\right)^2=-\dfrac{11}{2}\)

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{3}{4}-\left(-\dfrac{11}{2}\right)\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\dfrac{25}{4}\\ \Rightarrow\left(x-\dfrac{1}{2}\right)^2=\left(\pm\dfrac{5}{2}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=\dfrac{5}{2}\\x-\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}+\dfrac{1}{2}\\x=-\dfrac{5}{2}+\dfrac{1}{2}\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy, \(x\in\left\{-2;3\right\}\)

c,

\(\dfrac{3}{16}+1\dfrac{1}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}\)

\(\Rightarrow\dfrac{17}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}-\dfrac{3}{16}\\ \Rightarrow\dfrac{17}{16}\cdot\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\\ \Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\div\dfrac{17}{16}\\ \Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{17}\)

Bạn xem lại đề có sai kh nhỉ?

Nguyễn Đức Trí
31 tháng 8 2023 lúc 6:35

c) \(\dfrac{3}{16}+\dfrac{1}{\dfrac{1}{16}}\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}\)

\(\Rightarrow16\left(x-\dfrac{2}{3}\right)^2=\dfrac{3}{4}-\dfrac{3}{16}\)

\(\Rightarrow16\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}\)

\(\Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{16}:16\)

\(\Rightarrow\left(x-\dfrac{2}{3}\right)^2=\dfrac{9}{256}=\left(\dfrac{3}{16}\right)^2\)

\(\Rightarrow\left[{}\begin{matrix}x-\dfrac{2}{3}=\dfrac{3}{16}\\x-\dfrac{2}{3}=-\dfrac{3}{16}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{16}+\dfrac{2}{3}\\x=-\dfrac{3}{16}+\dfrac{2}{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{41}{48}\\x=\dfrac{23}{48}\end{matrix}\right.\)

Nghĩa Phạm trọng
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 9 2021 lúc 22:02

a: Ta có: \(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)

\(\Leftrightarrow x^3+8-x^3-2x=15\)

\(\Leftrightarrow2x=-7\)

hay \(x=-\dfrac{7}{2}\)

b: Ta có: \(\left(x-2\right)^3-\left(x-4\right)\left(x^2+4x+16\right)+6\left(x+1\right)^2=49\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+64+6\left(x+1\right)^2=49\)

\(\Leftrightarrow-6x^2+12x+56+6x^2+12x+6=49\)

\(\Leftrightarrow24x=-13\)

hay \(x=-\dfrac{13}{24}\)

thuyhang tran
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 9 2021 lúc 12:26

Bài 2: 

a: Ta có: \(\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\)

\(=\left(x^2-4\right)\left(x^2+4\right)\)

\(=x^4-16\)

b: Ta có:\(\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=x^3-x^2y+xy^2+x^2y-xy^2+y^3\)

\(=x^3+y^3\)

Nguyễn Lê Phước Thịnh
10 tháng 9 2021 lúc 12:26

Bài 1: 

Ta có: \(\left(x+4\right)\left(x^2-4x+16\right)-x\left(x+1\right)\left(x+3\right)+3x^2=0\)

\(\Leftrightarrow x^3+64-x\left(x^2+4x+3\right)+3x^2=0\)

\(\Leftrightarrow x^3+64-x^3-4x^2-3x+3x^2=0\)

\(\Leftrightarrow-x^2-3x+64=0\)

\(\Leftrightarrow x^2+3x-64=0\)

\(\text{Δ}=3^2-4\cdot1\cdot\left(-64\right)=265\)

Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}x_1=\dfrac{-3-\sqrt{265}}{2}\\x_2=\dfrac{-3+\sqrt{265}}{2}\end{matrix}\right.\)