Chứng minh rằng n2(n2-1) chia hết cho 24
Làm hộ mình với! Cảm ơn các bạn nhiều....
Chứng minh rằng: Tổng 3 số lẻ liên tiếp không chia hết cho 6.
Giải nhanh hộ mình nhé các bạn. Cảm ơn rất nhiều!!!
a) Gọi ba số chẵn liên tiếp là: a; a+2; a+4
Ta có: a+a+2+a+4=3a+6
Vì 6 chia hết cho 6=>3a+6 chia hết cho 6
=>tổng của ba số chắn liên tiếp chia hết cho 6
Chứng minh rằng: Số 11...1(n chữ số 1)-10n chia hết cho 9
Các bạn giúp mình với mình cảm ơn rất nhiều
a.1111111...1 = 10^(n-1) + 10^(n-2) +....1 (gồm n số 1)
10^n chia 9 dư 1 => 10^(n-1) = 9.k(n-1) + 1
10^(n-1) chia 9 dư 1 => 10^(n-2) = 9.k(n-2) +1
.....
10 chia 9 dư 1 => 10 = 9.k1 + 1 (ở đây k1=3)
=>11111....1 = 9.(k1 + k2 +... + k(n-1)) +(1+1+...+1) (gồm n số 1)
= 9.A + n
=>8n + 11111...1= 9A +9n chia hết cho 9
b.11111111....1 (gồm 27 số 1)
= 1111...100.....0 + 11111...10000...0 + 1111...1
-------------------------- ----------------------- -----------
9chữsố1;18chữsố 0 9chữsô1;9chữsố0 9chữsô1
=111111111 x (10^18 + 10^9 +1)
ta có: 111111111 chia hết cho 9 (tổng các chữ số =9)
10^18 chia 3 dư 1
10^9 chia 3 sư 1
=> 10^18 + 10^9 +1 chia hết cho 3
vậy 1111.....1111 chia hết cho 27 (gồm 27 số 1)
Giải giúp mình với cho một số có ba chữ số aba chứng minh rằng aba chia hết cho 7 thì a+b cũng chia hết cho 7 và ngược lại
Cảm ơn các bạn nhiều
707 nhé
707 : 7 = 101
7 + 0 = 7 : 7 = 1
aba chia hết cho 7.Vậy a x100+b x10+a chia hết cho 7 tương đương với a x101+b x10 cũng chia hết cho 7.
ax101+bx10 tương đương với ax10+bx10+ax91 chia hết cho 7=10x(a+b)+ax91 mà 91 chia hết cho 7 nên suy ra a chia hết cho 7,10x(a+b) cũng chia hết cho 7 và từ đó suy ra a+b chia hết cho 7
K=2+22+23+....+220.
Chứng minh K chia hết cho 93.
Mọi người ơi giúp mình với,các bạn nhớ giải ra hộ mình nhé!Cảm ơn các bạn rất nhiều.
\(K=2+2^2+2^3+...+2^{20}\)
\(2K=2^2+2^3+2^4+...+2^{21}\)
\(\Rightarrow K=2K-K=2^{21}-2=2097150⋮93\)
=> K chia hết cho 93
Ta có: 93=31*3
Bạn cm K chia hết cho 31 và 3
Vào Câu hỏi của friend forever II Lê Tiến Đạt
Chứng minh rằng với mọi số nguyên n thì (2 - n) ( n2 - 3n + 1) + n (n2 + 12 )+ 8 chia hết cho 5
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\) (đpcm)
chứng minh rằng (53n+2+32n+3) chia hết cho 11.
Giúp mình với!!! Cảm ơn các bạn nhiều :)
Chứng minh rằng với mọi số tự nhiên n ,ta có:
(n + 3)2 - n2 chia hết cho 3
(n - 5)2 - n2 chia hết cho 5 và không chia hết cho 2
a: \(\left(n+3\right)^2-n^2=\left(n+3+n\right)\left(n+3-n\right)\)
\(=3\left(2n+3\right)⋮3\)
b: Đặt A=\(\left(n-5\right)^2-n^2\)
\(A=\left(n-5\right)^2-n^2\)
\(=n^2-10n+25-n^2\)
\(=-10n+25=5\left(-2n+5\right)⋮5\)
\(A=\left(n-5\right)^2-n^2\)
\(=-10n+25\)
\(-10n⋮2;25⋮̸2\)
=>-10n+25 không chia hết cho 2
=>A không chia hết cho 2
(n + 3)² - n² = n² + 6n + 9 - n²
= 6n + 9
= 3(3n + 3) ⋮ 3
Vậy [(n + 3)² - n²] ⋮ 3 với mọi n ∈ ℕ
--------
(n - 5)² - n² = n² - 10n + 25 - n²
= -10n + 25
= -5(2n - 5) ⋮ 5
Do -10n ⋮ 2
25 không chia hết cho 2
⇒ -10n + 25 không chia hết cho 2
Vậy [(n - 5)² - n²] ⋮ 5 và không chia hết cho 2 với mọi n ∈ ℕ
chứng minh rằng với mọi số tự nhiên n: (x+1)^2n-x^2n-2x-1 chia hết cho x*(x+1)*(2x+1)
CẢM ƠN CÁC BẠN NHIỀU
Chứng minh rằng nếu số nguyên n lớn hơn 1 thoả mãn n2 + 4 và n2 +16 là các số nguyên tố thì n chia hết cho 5.
Ta có với mọi số nguyên m thì m2 chia cho 5 dư 0 , 1 hoặc 4.
+ Nếu n2 chia cho 5 dư 1 thì n 2 = 5 k + 1 = > n 2 + 4 = 5 k + 5 ⋮ 5 ; k ∈ N * .
Nên n2+4 không là số nguyên tố
+ Nếu n2 chia cho 5 dư 4 thì n 2 = 5 k + 4 = > n 2 + 16 = 5 k + 20 ⋮ 5 ; k ∈ N * .
Nên n2+16 không là số nguyên tố.
Vậy n2 ⋮ 5 hay n ⋮ 5