giải pt
\(\dfrac{x+35}{1984}-\dfrac{x+30}{1989}+\dfrac{x+19}{2000}+\dfrac{x+23}{1996}\text{=}-2\)
Giải các phương trình sau:
a) \(\dfrac{x+1}{35}+\dfrac{x+3}{33}=\dfrac{x+5}{31}+\dfrac{x+7}{29}\)
b) \(\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}+\dfrac{x-4}{2000}+\dfrac{x-2}{2002}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}+\dfrac{x-1996}{8}+\dfrac{x-1994}{10}\)
a: \(\Rightarrow\left(\dfrac{x+1}{35}+1\right)+\left(\dfrac{x+3}{33}+1\right)=\left(\dfrac{x+5}{31}+1\right)+\left(\dfrac{x+7}{29}+1\right)\)
=>x+36=0
=>x=-36
b: \(\Leftrightarrow\left(\dfrac{x-10}{1994}-1\right)+\left(\dfrac{x-8}{1996}-1\right)+\left(\dfrac{x-6}{1998}-1\right)+\left(\dfrac{x-4}{2000}-1\right)+\left(\dfrac{x-2}{2002}-1\right)=\left(\dfrac{x-2002}{2}-1\right)+\left(\dfrac{x-2000}{4}-1\right)+\left(\dfrac{x-1998}{6}-1\right)+\left(\dfrac{x-1996}{8}-1\right)+\left(\dfrac{x-1994}{10}-1\right)\)
=>x-2004=0
=>x=2004
Giải pt sau:
\(\dfrac{2032-x}{25}+\dfrac{2053-x}{23}+\dfrac{2070-x}{21}+\dfrac{2083-x}{19}=10\)
\(\Leftrightarrow\dfrac{2032-x}{25}-1+\dfrac{2053-x}{23}-2+\dfrac{2070-x}{21}-3+\dfrac{2083-x}{19}-4=0\)
=>2007-x=0
hay x=2007
\(\dfrac{2032-x}{25}+\dfrac{2053-x}{23}+\dfrac{2070-x}{21}+\dfrac{2083-x}{19}=10\)
\(\Leftrightarrow\left(\dfrac{2032-x}{25}-1\right)+\left(\dfrac{2053-x}{23}-2\right)+\left(\dfrac{2070-x}{21}-3\right)+\left(\dfrac{2083-x}{19}-4\right)=0\)
\(\Leftrightarrow\dfrac{2032-x-25}{25}+\dfrac{2053-x-46}{23}+\dfrac{2070-x-63}{21}+\dfrac{2083-x-76}{19}=0\)
\(\Leftrightarrow\dfrac{2007-x}{25}+\dfrac{2007-x}{23}+\dfrac{2007-x}{21}+\dfrac{2007-x}{19}=0\)
\(\Leftrightarrow\left(2007-x\right)\left(\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}+\dfrac{1}{19}\right)=0\)
\(\Leftrightarrow2007-x=0\left(vì.\dfrac{1}{25}+\dfrac{1}{23}+\dfrac{1}{21}+\dfrac{1}{19}\ne0\right)\)
\(\Leftrightarrow x=2007\)
Giải pt sau
\(\dfrac{1}{\text{x}^2+5x+6}\)+\(\dfrac{1}{\text{x}^2+7x+12}\)+\(\dfrac{1}{x^2+9x +12}\)+\(\dfrac{1}{\text{x}^2+9x+30}=\dfrac{1}{8}\)
Sửa lại đề nha:
\(\dfrac{1}{x^2+9x+12}thành\dfrac{1}{x^2+9x+20}\)
⇔ \(\dfrac{1}{\left(x+2\right)\left(x+3\right)}+\dfrac{1}{\left(x+3\right)\left(x+4\right)}+\dfrac{1}{\left(x+4\right)\left(x+5\right)}+\dfrac{1}{\left(x+5\right)\left(x+6\right)}=\dfrac{1}{8}\)
⇔ \(\dfrac{1}{x+2}-\dfrac{1}{x+3}+\dfrac{1}{x+3}-\dfrac{1}{x+4}+\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
⇔ \(\dfrac{1}{x+2}-\dfrac{1}{x+6}=\dfrac{1}{8}\)
⇔ \(\dfrac{x+6-x-2}{\left(x+2\right)\left(x+6\right)}=\dfrac{1}{8}\)
⇔ \(\dfrac{4}{x^2+8x+12}=\dfrac{1}{8}\)
⇔ \(x^2+8x+12=32\)
⇔ \(x^2+8x-20=0\)
⇔ \(\left(x-2\right)\left(x+10\right)=0\)
⇔ \(\left[{}\begin{matrix}x=2\\x=-10\end{matrix}\right.\)
Giải pt sau
a)x\(^2\)-10x=-25
b)\(\dfrac{x+4}{2000}+\dfrac{x+8}{1996}\dfrac{ }{ }\)=\(\dfrac{x+12}{1992}+\dfrac{x+16}{1988}\)
GIẢI CHI TIẾT NHÉ
a) \(x^2-10x=-25\)
\(\Leftrightarrow x^2-10x+25=0\)
\(\Leftrightarrow\left(x-5\right)^2=0\)
\(\Leftrightarrow x=5\)
b) \(\dfrac{x+4}{2000}+\dfrac{x+8}{1996}=\dfrac{x+12}{1992}+\dfrac{x+16}{1988}\)
\(\Leftrightarrow\dfrac{x+4}{2000}+1+\dfrac{x+8}{1996}+1=\dfrac{x+12}{1992}+1+\dfrac{x+16}{1988}+1\)
\(\Leftrightarrow\dfrac{x+2004}{2000}+\dfrac{x+2004}{1996}-\dfrac{x+2004}{1992}-\dfrac{x+2004}{1988}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\dfrac{1}{2000}+\dfrac{1}{1996}-\dfrac{1}{1992}-\dfrac{1}{1988}\right)=0\)
\(\Leftrightarrow x+2004=0\)(vì \(\dfrac{1}{2000}+\dfrac{1}{1996}-\dfrac{1}{1992}-\dfrac{1}{1988}\ne0\))
\(\Leftrightarrow x=-2004\)
a) \(\dfrac{x+1}{35}\)+\(\dfrac{x+3}{33}\)=\(\dfrac{x+5}{31}\)+\(\dfrac{x+7}{29}\)Hd: cộng thêm 1 vào các hạng tửb) \(\dfrac{x-10}{1994}\)+\(\dfrac{x-8}{1996}\)+\(\dfrac{x-6}{1998}\)+\(\dfrac{x-4}{2000}\)+\(\dfrac{x-2}{2002}\)=\(\dfrac{x-2002}{2}\)+\(\dfrac{x-2000}{4}\)+\(\dfrac{x-1998}{6}\)+\(\dfrac{x-1996}{8}\)+\(\dfrac{x-1994}{10}\)Hd: trừ đi 1 vào các hạng tử
c) \(\dfrac{x-1991}{9}\)+\(\dfrac{x-1993}{7}\)+\(\dfrac{x-1995}{5}\)+\(\dfrac{x-1997}{3}\)+\(\dfrac{x-1999}{1}\)=\(\dfrac{x-9}{1991}\)+\(\dfrac{x-7}{1993}\)+\(\dfrac{x-5}{1995}\)+\(\dfrac{x-3}{1997}\)+\(\dfrac{x-1}{1999}\)Hd: trừ đi 1 vào các hạng tửd) \(\dfrac{x-8}{15}\)+\(\dfrac{x-74}{13}\)+\(\dfrac{x-67}{11}\)+\(\dfrac{x-64}{9}\)=10Chú ý: 10=1+2+3+4e) \(\dfrac{x-1}{13}\)-\(\dfrac{2x-13}{15}\)=\(\dfrac{3x-15}{27}\)-\(\dfrac{4x-27}{29}\)Hd: thêm hoặc bớt 1 vào các hạng tử
Bài 1 : Giải PT
\(\dfrac{x-10}{1994}\)+\(\dfrac{x-8}{1996}\)+\(\dfrac{x-6}{1998}\)= \(\dfrac{x-2002}{2}\)+\(\dfrac{x-2000}{4}\)+\(\dfrac{x-1998}{6}\)
Bài 2: Giải PT
\(\dfrac{x-85}{15}\)+\(\dfrac{x-74}{13}\)+\(\dfrac{x-67}{11}\)+\(\dfrac{x-64}{9}\)=10
bài 1:
\(\dfrac{x-10}{1994}+\dfrac{x-8}{1996}+\dfrac{x-6}{1998}=\dfrac{x-2002}{2}+\dfrac{x-2000}{4}+\dfrac{x-1998}{6}\)
<=>\(\left(\dfrac{x-10}{1994}-1\right)+\left(\dfrac{x-8}{1996}+-1\right)+\left(\dfrac{x-6}{1998}-1\right)=\left(\dfrac{x-2002}{2}-1\right)+\left(\dfrac{x-2000}{4}-1\right)+\left(\dfrac{x-1998}{6}-1\right)\)
<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}=\dfrac{x-2004}{2}+\dfrac{x-2004}{4}+\dfrac{x-2004}{6}\)
<=>\(\dfrac{x-2004}{1994}+\dfrac{x-2004}{1996}+\dfrac{x-2004}{1998}-\dfrac{x-2004}{2}-\dfrac{x-2004}{4}-\dfrac{x-2004}{6}=0\)
<=>(x-2004)\(\left(\dfrac{1}{1994}+\dfrac{1}{1996}+\dfrac{1}{1998}-\dfrac{1}{2}-\dfrac{1}{4}-\dfrac{1}{6}\right)\)
vì 1/1994+1/1996+1/1998-1/2-1/4-1/6 khác 0
nên x-2004=0=>x=2004
vyaj.......
bài 2:
\(\dfrac{x-85}{15}+\dfrac{x-74}{13}+\dfrac{x-67}{11}+\dfrac{x-64}{9}=10\)
<=>\(\left(\dfrac{x-85}{15}-1\right)+\left(\dfrac{x-74}{13}-2\right)+\left(\dfrac{x-67}{11}-3\right)+\left(\dfrac{x-64}{9}-4\right)=0\)
<=>\(\dfrac{x-100}{15}+\dfrac{x-100}{13}+\dfrac{x-100}{11}+\dfrac{x-100}{9}=0\)
<=>\(\left(x-100\right)\left(\dfrac{1}{15}+\dfrac{1}{13}+\dfrac{1}{11}+\dfrac{1}{9}\right)=0\)
vì 1/15+1/13+1/11+1/9 khác 0
=>x-100=0<=>x=100
Tìm x, biết
\(d.\dfrac{1}{x^2+9x+20}+\dfrac{1}{x^{2^{ }}+11x+30}+\dfrac{1}{x^2+13x+42}=\dfrac{1}{18}\)
\(e.\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}=10\)
d: ĐKXĐ: x<>-4; x<>-5; x<>-6; x<>-7
\(PT\Leftrightarrow\dfrac{1}{x+4}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+6}+\dfrac{1}{x+6}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
=>\(\dfrac{1}{x+4}-\dfrac{1}{x+7}=\dfrac{1}{18}\)
=>\(\dfrac{x+7-x-4}{\left(x+4\right)\left(x+7\right)}=\dfrac{1}{18}\)
=>x^2+11x+28=54
=>x^2+11x-26=0
=>(x+13)(x-2)=0
=>x=2 hoặc x=-13
e: \(\dfrac{x-241}{17}+\dfrac{x-220}{19}+\dfrac{x-195}{21}+\dfrac{x-166}{23}=10\)
\(\Leftrightarrow\left(\dfrac{x-241}{17}-1\right)+\left(\dfrac{x-220}{19}-2\right)+\left(\dfrac{x-195}{21}-3\right)+\left(\dfrac{x-166}{23}-4\right)=0\)
=>x-258=0
=>x=258
Giải phương trình:\(\dfrac{x-29}{1970}+\dfrac{x-27}{1972}+\dfrac{x-25}{1974}+\dfrac{x-23}{1976}+\dfrac{x-21}{1978}+\dfrac{x-19}{1980}=\dfrac{x-1970}{29}+\dfrac{x-1972}{27}+\dfrac{x-1974}{25}+\dfrac{x-1976}{23}+\dfrac{x-1978}{21}+\dfrac{x-1980}{19}\)
Ta có: \(\frac{x-29}{1970}+\frac{x-27}{1972}+\frac{x-25}{1974}+\frac{x-23}{1976}+\frac{x-21}{1978}+\frac{x-19}{1980}\)\(=\frac{x-1970}{29}+\frac{x-1972}{27}+\frac{x-1974}{25}+\frac{x-1976}{23}+\frac{x-1978}{21}+\frac{x-1980}{19}\)
\(\Leftrightarrow\left(\frac{x-29}{1970}-1\right)+\left(\frac{x-27}{1972}-1\right)+\left(\frac{x-25}{1974}-1\right)+\left(\frac{x-23}{1976}-1\right)+\left(\frac{x-21}{1978}-1\right)+\left(\frac{x-19}{1980}-1\right)\)\(=\left(\frac{x-1970}{29}-1\right)+\left(\frac{x-1972}{27}-1\right)+\left(\frac{x-1974}{25}-1\right)+\left(\frac{x-1976}{23}-1\right)+\left(\frac{x-1978}{21}-1\right)+\left(\frac{x-1980}{19}-1\right)\)
\(\Leftrightarrow\frac{x-1999}{1970}+\frac{x-1999}{1972}+\frac{x-1999}{1974}+\frac{x-1999}{1976}+\frac{x-1999}{1978}+\frac{x-1999}{1980}\)\(=\frac{x-1999}{29}+\frac{x-1999}{27}+\frac{x-1999}{25}+\frac{x-1999}{24}+\frac{x-1999}{21}+\frac{x-1999}{19}\)
\(\Leftrightarrow\left(x-1999\right)\left(\frac{1}{1970}+\frac{1}{1972}+\frac{1}{1974}+\frac{1}{1976}+\frac{1}{1978}+\frac{1}{1980}\right)\)\(=\left(x-1999\right)\left(\frac{1}{29}+\frac{1}{27}+\frac{1}{25}+\frac{1}{23}+\frac{1}{21}+\frac{1}{19}\right)\)
\(\Leftrightarrow\left(x-1999\right)\left(\frac{1}{1970}+\frac{1}{1972}+\frac{1}{1974}+\frac{1}{1976}+\frac{1}{1978}+\frac{1}{1980}-\frac{1}{29}-\frac{1}{27}-\frac{1}{25}-\frac{1}{23}-\frac{1}{21}-\frac{1}{19}\right)=0\)\(\Leftrightarrow\) \(x-1999=0\) (Vì ...khác 0)
\(\Leftrightarrow x=1999\)(thỏa mãn)
Vậy \(x=1999\)
giải pt \(x+\dfrac{x}{\sqrt{x^2-1}}=\dfrac{35}{12}\)