Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Cao Triệu Vy
Xem chi tiết
Nguyễn Cao Triệu Vy
21 tháng 9 2018 lúc 20:41

giúp mình nhé tài liệu bồi dưỡng học sinh giỏi lớp

Thầy Tùng Dương
Xem chi tiết
Nguyễn Trọng Tấn
Xem chi tiết
đẳng cấp phong cách
Xem chi tiết
Nguyễn Thanh Liêm
20 tháng 10 2017 lúc 21:07

cách suy luận của mình hơi rườm rà, bạn thông cảm :))

Trong 4 số tự nhiên chắc chắn có 2 số cùng số dư khi chia cho 3 (theo nguyên lí Đi-rich-lê, nếu chưa biết nguyên lí này thì điều trên cũng dễ hiểu) => tồn tại một hiệu chia hết cho 3
=> (b-a)(c-a)(d-a)(c-b)(d-b)(d-c) chia hết cho 3

Bây giờ ta chỉ cần chứng minh tích trên chia hết cho 4 là đủ và ta sẽ chứng minh bằng cách có hai hiệu cùng chia hết cho 2

Với bốn số tự nhiên a, b, c, d sẽ xảy ra 5 trường hợp sau:
TH1: cả bốn số đều chẵn
TH2: có ba số chẵn và một số lẻ
TH3: có hai số chẵn và hai số lẻ
TH4: có ba số lẻ và một số chẵn
TH5: cả bốn số đều lẻ

Xét TH1: a, b, c, d đều chẵn, dễ suy ra dpcm

Xét TH2: có ba số chẵn và một số lẻ.

Không giảm tính tổng quát, ta giả sử a, b, c chẵn và d lẻ

=> (a - b) và (b - c) cùng chia hết cho 2 => (a - b)(b - c) chia hết cho 4 => tích chia hết cho 4

Xét TH3: có hai số chẵn và hai số lẻ

Không giảm tổng quát, ta giả sử a và b chẵn còn c và d lẻ

=> (a - b) và (c - d) chia hết cho 2 => (a - b)(c - d) chia hết cho 4 => tích chia hết cho 4

TH4 và TH5 làm tương tự

=> trong mọi trường hợp ta đều có tích chia hết cho 4, mà tích lại chia hết cho 3 và (3, 4) = 1 => dpcm

tink với nhé

Trương Quang Tuấn
Xem chi tiết
Neet
1 tháng 3 2017 lúc 19:35

Áp dụng BĐT cauchy-schwarz:

\(\frac{a^4}{c}+\frac{b^4}{d}\ge\frac{\left(a^2+b^2\right)^2}{c+d}=\frac{1}{c+d}\)

dấu = xảy ra khi\(\frac{a^2}{c}=\frac{b^2}{d}\Leftrightarrow a^2d=b^2c\)\(a=b=\frac{1}{\sqrt{2}}\)

mà theo đề:\(\frac{a^4}{c}+\frac{b^4}{d}=\frac{1}{c+d}\Leftrightarrow a^2d=b^2c\)

Áp dụng BĐT cauchy:\(\frac{a^2}{c}+\frac{d}{b^2}\ge2\sqrt{\frac{a^2d}{b^2c}}=2\)

dấu = xảy ra khi \(a=b=\frac{1}{\sqrt{2}}\)

Lê Minh Đức
Xem chi tiết
Nguyễn Linh Chi
7 tháng 2 2020 lúc 14:53

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

Khách vãng lai đã xóa
TRỊNH MINH TÂM
12 tháng 3 2022 lúc 17:01

Câu hỏi của Adminbird - Toán lớp 7 - Học toán với OnlineMath

lộc Nguyễn
Xem chi tiết
Nguyễn Hải Minh
2 tháng 5 2021 lúc 12:54

b, Ta có \(m=a+b+c\)

          \(\Rightarrow am+bc=a\left(a+b+c\right)+bc=a\left(a+b\right)+ac+bc=\left(a+c\right)\left(a+b\right)\)

CMTT \(bm+ac=\left(b+c\right)\left(b+a\right)\);\(cm+ab=\left(c+a\right)\left(c+b\right)\)

Suy ra \(\left(am+bc\right)\left(bm+ac\right)\left(cm+ab\right)=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)

Khách vãng lai đã xóa
  
Xem chi tiết

Do  a < b < c < d < m < n 
=> 2c < c + d 
m< n => 2m < m+ n 
=> 2c + 2a +2m = 2 ( a + c + m) < a +b + c + d + m + n) 
Do đó :
(a + c + m)/(a + b + c + d + m + n) < 1/2(đcpcm)

zZz Cool Kid_new zZz
11 tháng 6 2019 lúc 19:01

Từ:\(\hept{\begin{cases}a< c\\c< d\\m< n\end{cases}}\Rightarrow a+c+m< c+d+n\)

\(\Rightarrow2\left(a+c+n\right)< a+b+c+d+m+n\)

\(\Rightarrow\frac{a+c+m}{a+b+c+d+m+n}< \frac{1}{2}\)

Darlingg🥝
11 tháng 6 2019 lúc 19:02

Tham khảo tại link nèy nhé bạn :https://olm.vn/hoi-dap/detail/84653011737.html

~Hok tốt~

Lê Hà Anh Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 3 2020 lúc 19:29

Bài 1: Tìm x

a)

Ta có: \(\frac{3}{x-5}=\frac{4}{x}\)

\(\Rightarrow3x=4\left(x-5\right)\)

\(\Leftrightarrow3x-4\left(x-5\right)=0\)

\(\Leftrightarrow3x-4x+20=0\)

\(\Leftrightarrow-x+20=0\)

\(\Leftrightarrow-x=-20\)

hay x=20

Vậy: x=20

b) Sai đề

Bài 2: Sửa đề: Chứng minh \(\frac{a+c}{b+d}=\frac{a-c}{b-d}\)

Ta có: \(\frac{a}{b}=\frac{c}{d}\)(gt)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}=\frac{a-c}{b-d}\)(đpcm)

Khách vãng lai đã xóa