giúp mình nhé tài liệu bồi dưỡng học sinh giỏi lớp
giúp mình nhé tài liệu bồi dưỡng học sinh giỏi lớp
Cho a,b,c,d là các số thực. Chứng minh rằng a^2+b^2>=2ab(1). Áp dụng chứng minh các bất đẳng thức sau
a) (a^2+1)(b^2+1)(c^2+1)>=8abc
b) (a^2+4)(b^2+4)(c^2+4)(d^2+4)>=256abcd
Cho 4 số a,b,c,d bất kỳ chứng minh rằng:\(\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)<\(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\)
Bài 2: Cho a,b,c,d∈ R. Chứng minh rằng a2+b2 ≥ 2ab (1). Áp dụng chứng minh các bất đẳng thức sau:
a) a4+b4+c4+d4 ≥ 4abcd
b) (a2+1)(b2+1)(c2+1) ≥ 8abc
c) (a2+4)(b2+4)(c2+4)(d2+4) ≥ 256abcd
Cho a,b,c,d thỏa mãn a+b=c+d; \(a^2\)+\(b^2\)=\(c^2\)+\(d^2\)
Chứng minh rằng \(a^{2013}\)+\(b^{2013}\)+\(c^{2013}\)+\(d^{2013}\)
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
chứng minh các bất đẳng thức a^2+b^2+c^2+d^2+4 >=2.(a+b+c+d)
Cho a,b,,d là các số tự nhiên đối một khác nhau thỏa mãn điều kiện
\(\dfrac{a}{a+b}\)+\(\dfrac{b}{b+c}\)+\(\dfrac{c}{c+d}\)+\(\dfrac{d}{d+a}\)=\(2\)
Chứng minh rằng ac=bd
19 a) Cho (a-b)^2+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
Chứng minh rằng a=b=c
b) Cho a,b,c,d là các số khác 0 và
(a+b+c+d)(a-b+c-d)(a+b-c-d)
Chứng minh rằng a/c=b/d
Cho a,b,c là 3 số dương thỏa mãn :
a4 +b4 +c4 <2 (a2b2 +b2c2+c2a2 )
Chứng minh rằng tồn tại của tam giác có độ dài các cạnh lần lượt là a,b,c