19: a) Cho (a-b)62+(b-c)^2+(c-a)^2=(a+b-2c)^2+(b+c-2a)^2+(c+a-2b)^2
Chứng minh rằng a=b=c
b) Cho a,b,c,d là các số khác 0 và
(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d)
Chứng minh rằng a/c=b/d
Giups mình với !
@Nguyễn Huy Tú @DƯƠNG PHAN KHÁNH DƯƠNG@Nguyễn Thanh Hằng@Akai Haruma@Phùng Khánh Linh
Cho a,b,,d là các số tự nhiên đối một khác nhau thỏa mãn điều kiện
\(\dfrac{a}{a+b}\)+\(\dfrac{b}{b+c}\)+\(\dfrac{c}{c+d}\)+\(\dfrac{d}{d+a}\)=\(2\)
Chứng minh rằng ac=bd
1.Cho \(a,b,c,d\) là các số nguyên thỏa mãn \(a^3+b^3=2\left(c^3-d^3\right)\) . Chứng minh rằng a+b+c+d chia hết cho 3
2.Cho ba số dương a,b,c thỏa mãn abc=1. Chứng minh rằng \(\dfrac{1}{a^3\left(b+c\right)}+\dfrac{1}{b^3\left(c+a\right)}+\dfrac{1}{c^3\left(a+b\right)}\ge\dfrac{3}{2}\)
a, Cho x,y,z là các số dương. Chứng minh rằng: x7 + y7 > x3y3(x+y)
b, Cho a,b,c là các số dương thỏa mãn abc = 1. Chứng minh rằng :
\(\frac{a^2b^2}{a^7+a^2b^2+b^7}+\frac{b^2c^2}{b^7+b^2c^2+c^7}+\frac{c^2a^2}{c^7+c^2a^2+a^7}\)< 1
Cho a,b,c,d thỏa mãn a+b=c+d; \(a^2\)+\(b^2\)=\(c^2\)+\(d^2\)
Chứng minh rằng \(a^{2013}\)+\(b^{2013}\)+\(c^{2013}\)+\(d^{2013}\)
Cho các số a,b,c,d thõa mãn .
a^2 +b^2 +(a-b)^2=c^2+d^2 + (c-d)^2
Chứng minh rằng: a^4 +b^4 + (a-b)^=c^4 +d^4 + (c-d)^4
với các số a,b,c,d là các số lớn hơn 0. Chứng minh rằng:
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}\)
1.Tìm x
a)\(x^2+9y^2-4x+6y+5=0\)
b)\(2x^2+2xy+y^2-6x-4y+5=0\)
2.Cho A = \(a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2\)
Chứng minh
a) Nếu a,b,c là độ dài 3 cạnh tam giác thì A < 0
b) Nếu A<0 và a,b,c là các số dươn thì a,b,c là độ dài 3 cạnh 1 tam giác
Cho a,b,c,d >0. Chứng minh rằng:
\(2< \frac{a+b}{a+b+c}+\frac{b+c}{b+c+d}+\frac{c+d}{c+d+a}+\frac{d+a}{d+a+b}< 3\)