Lời giải:
\(a^4+b^4+c^4< 2(a^2b^2+b^2c^2+c^2a^2)\)
\(\Leftrightarrow a^4+b^4+c^4-2a^2b^2-2b^2c^2-2a^2c^2< 0\)
\(\Leftrightarrow (a^4+b^4+2a^2b^2)-4a^2b^2+c^4-(2b^2c^2+2c^2a^2)< 0\)
\(\Leftrightarrow (a^2+b^2)^2-2c^2(a^2+b^2)+c^4-4a^2b^2< 0\)
\(\Leftrightarrow (a^2+b^2-c^2)^2-(2ab)^2< 0\)
\(\Leftrightarrow (a^2+b^2-c^2-2ab)(a^2+b^2-c^2+2ab)< 0\)
\(\Leftrightarrow [(a-b)^2-c^2][(a+b)^2-c^2]< 0\)
\(\Leftrightarrow (a-b+c)(a-b-c)(a+b-c)(a+b+c)< 0\)
\(\Leftrightarrow (a+c-b)(b+c-a)(a+b-c)>0\)
Từ đây ta thấy có 2 TH xảy ra
TH1: cả 3 thừa số \(a+c-b, b+c-a, a+b-c\) đều dương
\(\Rightarrow a+b>c; b+c>a; c+a>b\) nên $a,b,c$ có thể là độ dài của $3$ cạnh tam giác
TH2: Trong 3 thừa số có một thừa số dương, 2 thừa số âm. Không mất tổng quát, giả sử:
\(\left\{\begin{matrix} a+c-b>0\\ b+c-a< 0\\ a+b-c< 0\end{matrix}\right.\Rightarrow (b+c-a)+(a+b-c)< 0\)
\(\Rightarrow 2b< 0\Rightarrow b< 0\) (trái với đề bài- loại)
Vậy tồn tại tam giác có độ dài các cạnh là $a,b,c$