Giả sử BĐT đúng , Bình phương 2 vế đc
\(a^2+b^2+c^2+d^2+2\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge a^2+b^2+c^2+d^2+2\left(ac+bd\right)\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\).Bình phương 2 vế đc
\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)
\(\Leftrightarrow a^2d^2+b^2c^2\ge2abcd\Leftrightarrow\left(ad-bc\right)^2\ge0\)(luôn đúng)
Vậy BĐT luôn đúng mà bạn ghi sai dấu