Cho a,b,c > 0 thỏa mãn Chứng minh abc8
cho a,b,c,d (a,c khác 0) thỏa mãn (12ab + cd) chia hết cho 11. Chứng minh rằng abcd chia hết 11.
Cho a,b,c khác 0 thỏa mãn (a+b+c)(1/a+1/b+1/c)=1.Tính giá trị của P=(a^11+b^11)(b^3+c^3)(a^2015+c^2015)
Cho a, b, c là ba số thực dương thỏa mãn: a+b+c= 3. Tìm giá trị nhỏ nhất của biểu thức: M = a + 1 1 + b 2 + b + 1 1 + c 2 + c + 1 1 + a 2
Vì: a + 1 1 + b 2 = a + 1 − b 2 ( a + 1 ) 1 + b 2 ; 1 + b 2 ≥ 2 b n ê n a + 1 1 + b 2 ≥ a + 1 − b 2 ( a + 1 ) 2 b = a + 1 − a b + b 2
Tương tự: b + 1 1 + c 2 ≥ b + 1 − b c + c 2 ; c + 1 1 + a 2 ≥ c + 1 − c a + a 2 ⇒ M ≥ a + b + c + 3 − ( a + b + c ) + ( a b + b c + c a ) 2 = 3 + 3 − ( a b + b c + c a ) 2
Chứng minh được: 3 ( a b + b c + c a ) ≤ ( a + b + c ) 2 = 9 a c ⇒ 3 − ( a b + b c + c a ) 2 ≥ 0 ⇒ M ≥ 3
Dấu “=” xảy ra khi a = b = c = 1. Giá trị nhỏ nhất của M bằng 3.
Tìm a,b thỏa mãn:
a, 18 a b chia hết cho 5 và 8
b, 34 a 5 b chia hết cho 4 và 9
c, 76 a 23 chia hết cho 9 và 11
d, 1 a a a 1 chia hết cho 11
a, Do 18 a b chia hết cho 5 và 8 nên b = 0, suy ra số cần tìm có dạng 18 a 0
Theo dấu hiệu nhận biết chia hết cho 8 thì ta có a 0 chia hết cho 8
=> a 0 cần tìm là 40 hoặc 80
Số cần tìm là 1840 hoặc 1880.
b, 34452; 34056
c, 76923
d, 12221
a) Tìm hai số tự nhiên m, n thỏa mãn: 18mn + 6^n = 222
b) Cho a,b,c,d là các chữ số (a,c = 0) thỏa mãn (12.ab + cd) : 11. Chứng minh rằng abcd : 11
a/ Ta có
\(6^3=216;6^4=1296\)
\(\Rightarrow n\le3\Rightarrow n=\left\{0;1;2;3\right\}\)
Thay lần lượt các giá trị của n vào \(18mn+6^n=222\) ta tìm được n=1 và m=12 là giá trị thoả mãn biểu thức
b/
\(\overline{abcd}=100.\overline{ab}+\overline{cd}=12.\overline{ab}+\overline{cd}+88.\overline{ab}\)
Ta có \(\left(12.\overline{ab}+\overline{cd}\right)⋮11;88.\overline{ab}⋮11\Rightarrow\overline{abcd}⋮11\)
Cho a,b,c,d là các chữ số (a,c thuộc 0) thoả mãn (12 x ab+cd) chia hết cho 11. Chứng minh abcd chia hết cho 11.
1. Cho a = 11....11 ( 2018 c/s 1) b = 44...44 ( 1009 c/s 4 ) chứng minh a+b+1 là số chính phương
2.Cho a = 11...11 (2n c/s 1) b = 11....111 (n+1 c/s 1) c = 66....66(n c/s 6) chứng minh a+b+c+8 là số chính phương
Bài 1:
Đặt \(\underbrace{111....1}_{1009}=t\Rightarrow 9t+1=10^{1009}\)
Ta có:
\(a+b+1=\underbrace{11...11}_{1009}.10^{1009}+\underbrace{11...1}_{1009}+4.\underbrace{11....1}_{1009}+1\)
\(=t(9t+1)+t+4.t+1=9t^2+6t+1=(3t+1)^2\) là scp.
Ta có đpcm.
Bài 2:
Đặt \(\underbrace{111....1}_{n}=t\Rightarrow 9t+1=10^n\)
Ta có:
\(a+b+c+8=\underbrace{111..11}_{n}.10^n+\underbrace{111....1}_{n}+\underbrace{11...1}_{n}.10+1+6.\underbrace{111...1}_{n}+8\)
\(t(9t+1)+t+10t+1+6t+8=9t^2+18t+9\)
\(=(3t+3)^2\) là scp.
Ta có đpcm.
Cho a, b là các số dương thỏa mãn điều kiện ( a + b ) 3 + 4 a b ≤ 12. Chứng minh bất đẳng thức 1 1 + a + 1 1 + b + 2015 a b ≤ 2016.
Ta có 12 ≥ ( a + b ) 3 + 4 a b ≥ 2 a b 3 + 4 a b . Đặt t = a b , t > 0 thì
12 ≥ 8 t 3 + 4 t 2 ⇔ 2 t 3 + t 2 − 3 ≤ 0 ⇔ ( t − 1 ) ( 2 t 2 + 3 t + 3 ) ≤ 0
Do 2 t 2 + 3 t + 3 > 0 , ∀ t nên t − 1 ≤ 0 ⇔ t ≤ 1 . Vậy 0 < a b ≤ 1
Chứng minh được 1 1 + a + 1 1 + b ≤ 2 1 + a b , ∀ a , b > 0 thỏa mãn a b ≤ 1
Thật vậy, BĐT 1 1 + a − 1 1 + a b + 1 1 + b − 1 1 + a b ≤ 0
a b − a ( 1 + a ) ( 1 + a b ) + a b − b ( 1 + b ) ( 1 + a b ) ≤ 0 ⇔ b − a 1 + a b a 1 + a − b 1 + b ⇔ ( b − a ) 2 ( a b − 1 ) ( 1 + a b ) ( 1 + a ) ( 1 + b ) ≤ 0
Do 0 < a b ≤ 1 nên BĐT này đúng
Tiếp theo ta sẽ CM 2 1 + a b + 2015 a b ≤ 2016 , ∀ a , b > 0 thỏa mãn a b ≤ 1
Đặt t = a b , 0 < t ≤ t ta được 2 1 + t + 2015 t 2 ≤ 2016
2015 t 3 + 2015 t 2 − 2016 t − 2014 ≤ 0 ⇔ ( t − 1 ) ( 2015 t 2 + 4030 t + 2014 ) ≤ 0
BĐT này đúng ∀ t : 0 < t ≤ 1
Vậy 1 1 + a + 1 1 + b + 2015 a b ≤ 2016. Đẳng thức xảy ra a = b = 1
Bài 15 : Tổng các giá trị của x thỏa mãn : 3x( 4-x)-2x+8 là :
A. 13/3
B. − 13/3
C. 11/3
D. − 11/3
Đề không có điều kiện mà chỉ có mỗi đa thức thì làm sao mà tìm $x$ hả bạn?