Cho a,b,c,d là các số tự nhiên sao cho a,c khác 9 và (12ab+cd) chia hết cho 11.Chứng minh abcd chia hết cho 11.
Cho a,b,c,d là các chữ số (a,c thuộc 0) thoả mãn (12 x ab+cd) chia hết cho 11. Chứng minh abcd chia hết cho 11.
chứng tỏ rằng:
A) Số aaa chia hết cho 37(a khác 0)
B) ab - ba chia hết cho 9
C) nếu ab+ cd chia hết cho11 thì abcd chia hết cho 11
cho a,b,c,d là các số nguyên thỏa mãn ab+cd chia hết cho a-c. Chứng minh rằng ad+bc chia hết cho a-c.
Cho a,b,c,d là các số nguyên thỏa mãn ab+cd chia hết cho a-c. Chứng minh rằng ad+bc chia hết cho a-c.
b1: Cho a,b,c,d là các số nguyên thỏa mãn ab+cd chia hết cho a-c. Chứng minh rằng ad+bc cũng chia hết cho a-c
Cho a,b,c là các chữ số (a khác 0)thỏa mãn a+b+c chia hết cho 7.chứng minh rằng nếu b=c thì abc chia hết cho 7
Chứng minh rằng :
a) abccba chia hết cho 11; b) ab + ba chia hết cho 11
c) Nếu abc + def chia hết cho 37 => abcdef chia hết cho 37
d) Nếu ab + cd + ef chia hết cho 11 => abcdef chia hết cho 11
cho ab+cd+eg chia hết cho 11
a, chứng minh rằng abcdeg chia hết cho 11
b, cho abcdeg chia hết cho 11 . Chứng minh rằng ab+cd+eg chia hết cho 11