So sánh phân số A= (10^12+6)/(10^12-11) và B =(10^11+5)/(10^11-12)
Không quy đồng ,hãy so sánh hai phân số
a \(\dfrac{19}{10}và\dfrac{10}{11}\)
b \(\dfrac{11}{10}và\dfrac{12}{11}\)
c \(\dfrac{9}{10}và\dfrac{10}{11}\)
a. 19/10 > 10/11
b. 11/10 = 12/11
c. 9/10 = 10/11
a)\(\dfrac{19}{10}>\dfrac{10}{11}\)
b)\(\dfrac{11}{10}=\dfrac{12}{11}\)
c)\(\dfrac{9}{10}< \dfrac{10}{11}\)
so sánh phân số 10/11 và 11/12
10/ 11 và 11/12
Ta có :1-10/11=1/11
1-11/12=1/12
Vì 1/11 > 1/12.Nên 10/11 < 11/12
So sánh A và B biết:
A=10^11-1/10^12-1 và B=10^10+1/10^11+1.
10^11, 10^12,10^10 là lũy thừa, còn / là phân số, do em bấm trên laptop nên không tiện.
ĐỀ : \(A=\frac{10^{11}-1}{10^{12}-1}\)và \(B=\frac{10^{10}+1}{10^{11}+1}\).
Ta có : \(10A=\frac{10\left(10^{11}-1\right)}{10^{12}-1}=\frac{10^{12}-10}{10^{12}-1}=\frac{10^{12}-1-9}{10^{12}-1}\)\(=1-\frac{9}{10^{12}-1}\).
\(10B=\frac{10\left(10^{10}+1\right)}{10^{11}+1}=\frac{10^{11}+10}{10^{11}+1}=\frac{10^{11}+1+9}{10^{11}+1}\)\(=1+\frac{9}{10^{11}+1}\).
Ta so sánh : \(1-\frac{9}{10^{12}-1}< 1+\frac{9}{10^{11}+1}\)hay \(10A< 10B.\)
\(\Rightarrow A< B\left(đpcm\right)\)
so sánh a và b:
A=10^11-1/10^12-1 và B=10^10+1/10^11+1
\(A=\dfrac{10^{11}+1}{10^{12}-1}\)
\(\Rightarrow10A=\dfrac{10^{11}+1}{10^{12}-1}.10\)
\(\Rightarrow10A=\dfrac{10\left(10^{11}+1\right)}{10^{12}-1}\)
\(\Rightarrow10A=\dfrac{10^{12}-10}{10^{12}-1}\)
\(B=\dfrac{10^{10}+1}{10^{11}+1}\)
\(\Rightarrow10B=\dfrac{10^{10}+1}{10^{11}+1}.10\)
\(\Rightarrow10B=\dfrac{\left(10^{10}+1\right).10}{10^{11}+1}\)
\(\Rightarrow10B=\dfrac{10^{11}+10}{10^{11}+1}\)
Ta thấy:
\(10^{12}-1>10^{12}-10>0\Rightarrow10A< 1\)
\(0< 10^{11}+1< 10^{11}+10\Rightarrow10B>1\)
Mà \(10A< 1;10B>1\)
\(\Rightarrow B>A\).
Bạn tham khảo cách giải này ạ:
Nếu có 1 phân số \(\dfrac{a}{b}\) < 1 thì a/b < a+n/b+n.
Tương tự ta có: A < (1011 -1)+11/(1012-1)+10
A < 1011+10/1012+10
A < 10(1010+1)/10(1011+1)
A < 10(1010+1)/10(1011+1)
A < 1010+1/1011+1
Vậy A< B ( đcpcm )
số A = 9/10+10/11+11/12+12/13+18/13.So sánh A với 5
So sánh :
A=10^11-1/10^12-1 và B=10^11-1/10^11+1
Cho A=10^11-1/10^12-1 và B=10^10+1/10^11=1. So sánh A và B.
B/A= [(10^10 + 1)/(10^11 + 1)]/[(10^11 - 1)/(10^12 - 1)]
= [(10^12 - 1).(10^10 + 1)]/[(10^11 - 1).(10^11 + 1)]
= [(10^22 - 1) + (10^12 - 10^10) ]/((10^22 - 1)
= 1 + (10^12 - 10^10)/(10^22 - 1) > 1
=> B > A
A=10^11-1/10^12-1 < B=10^10+1/10^11=1.
B/A= [(10^10 + 1)/(10^11 + 1)]/[(10^11 - 1)/(10^12 - 1)]
= [(10^12 - 1).(10^10 + 1)]/[(10^11 - 1).(10^11 + 1)]
= [(10^22 - 1) + (10^12 - 10^10) ]/((10^22 - 1)
= 1 + (10^12 - 10^10)/(10^22 - 1) > 1
=> B > A
Cho \(A=\dfrac{10^{11}-1}{10^{12}-1}\); \(B=\dfrac{10^{10}+1}{10^{11}+1}\) So sánh \(A\) và \(B\)
Lời giải:
$B=\frac{10^{11}+10}{10^{12}+10}$
Đặt $10^{11}-1=a; 10^{12}-1=b$ thì $0< a< b$. Khi đó:
$A-B=\frac{a}{b}-\frac{a+11}{b+11}=\frac{11(a-b)}{b(b+11)}<0$
$\Rightarrow A< B$
Cho A=10^11-1/10^12-1; B=10^10+1/10^11+1. So sánh A và B