\(A=\dfrac{10^{12}+6}{10^{12}-11}\)
\(\Rightarrow A=\dfrac{10^{12}-11+17}{10^{12}-11}\)
\(\Rightarrow A=\dfrac{10^{12}-11}{10^{12}-11}+\dfrac{17}{10^{12}-11}\)
\(\Rightarrow A=1-\dfrac{17}{10^{12}-11}\)
\(B=\dfrac{10^{11}+5}{10^{11}-12}\)
\(\Rightarrow B=\dfrac{10^{11}-12+17}{10^{11}-12}\)
\(\Rightarrow B=\dfrac{10^{11}-12}{10^{11}-12}+\dfrac{17}{10^{11}-12}\)
\(\Rightarrow B=1-\dfrac{17}{10^{11}-12}\)
Vậy ta cần so sánh \(1-\dfrac{17}{10^{12}-11}\) và \(1-\dfrac{17}{10^{11}-12}\)
Ta thấy \(\left(10^{12}-11\right)>\left(10^{11}-12\right)\) và 2 phân số trên cùng tử số 17 nên \(\dfrac{17}{10^{12}-11}< \dfrac{17}{10^{11}-12}\)
Vậy \(1-\dfrac{17}{10^{12}-11}>1-\dfrac{17}{10^{11}-12}\) hay \(A>B\)