Cho ▲ ABC có đường phân giác AD.Biết AB= 4 ,AC=6 ,BC=8.Tính các độ dài BD ,CD
Tam giác ABC vuông tại A có đường phân giác AD.Biết rằng độ dài của các cạnh góc vuông AB = 3,75cm, AC = 4,5cm. Tính độ dài BD, CD
Xét tg ABC ( ^A = 90o ) có:
BC2 = AB2 + AC2 (định lý Pytago)
Thay số: BC2 = 3,752 + 4,52
BC2 = 14,0625 + 20,25
BC2 = 34,3125
BC = \(\sqrt{34,3125}\) (BC > 0)
Xét tg ABC có D là đường pg ^A ( gt )
=> \(\dfrac{AB}{AC}=\dfrac{BD}{CD}\)
<=> \(\dfrac{AB}{AC+AB}=\dfrac{BD}{CD+BD}\)
Thay số: \(\dfrac{3,75}{4,5+3,75}=\dfrac{BD}{BC}\)
<=> \(\dfrac{3,75}{8,25}=\dfrac{BD}{\sqrt{34,3125}}\)
=> BD = (cm)
=> CD = BC - CD = (cm)
Cho tam giác ABC có AB bằng 4 cm AC bằng 12 cm BC = 6 cm các đường phân giác trong AD be cắt AB tại I
a, Tính BD và CD
b, Gọi AM là đường trung tuyến và G là trọng tâm tam giác ABC . C/m IG//BC và tính độ dài IG
cho tam giác abc vuông tại a(ab <ac).trên cạnh bc lấy điểm d sao cho ab=ad.biết cd=7cm,bd=18cm.tính độ dài cạnh ab
Cho tam giác ABC AB nhỏ hơn AC đường phân giác của góc a cắt BC tại d gọi m n lần lượt là hình chiếu của b và c trên ab câu b biết AB = 4 cm AC bằng 6 cm BC = 4 cm tính độ dài các đoạn thẳng BD CD
Xét ΔABC có AD là đường phân giác ứng với cạnh BC(gt)
nên \(\dfrac{BD}{AB}=\dfrac{CD}{AC}\)(Tính chất tia phân giác của tam giác)
hay \(\dfrac{BD}{4}=\dfrac{CD}{6}\)
mà BD+CD=BC=4cm(D nằm giữa B và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{4}=\dfrac{CD}{6}=\dfrac{BD+CD}{4+6}=\dfrac{4}{10}=\dfrac{2}{5}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{BD}{4}=\dfrac{2}{5}\\\dfrac{CD}{6}=\dfrac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}BD=\dfrac{8}{5}cm\\CD=\dfrac{12}{5}cm\end{matrix}\right.\)
Vậy: \(BD=\dfrac{8}{5}cm;CD=\dfrac{12}{5}cm\)
1. cho tam giác abc vuông a có cạnh ab=6cm, bc=10cm.các đường phân giác trong và ngoài của góc b cắt ac lần lượt ở d và e. tính các đoạn thẳng bd và be
2. cho tam giác abc vuông ở a, phân giác ad,đường cao ah. biết cd=68cm, bd=51cm. tính bh,hc
3. cho tam giác abc có góc b=60 độ, ac=13cm và bc-ba=7cm. tính độ dài các cạnh ab,bc
4. cho tam giác abc cân ở b và điểm d trên cạnh ac. biết góc bdc=60 độ, ad=3dm, dc=8dm. tính ab
Bài 4: Cho tam giác ABC có AD là đường phân giác.
a) Cho AC = 16 cm BD 6 cm CD=8 cm. Tính độ dài đoạn thẳng AB .
b) Qua D kẻ đường thẳng song song với AB, cắt AC tại E. Chứng minh
AC.AE=Ab.Ce
a, Vì AD là phân giác nên \(\dfrac{AB}{AC}=\dfrac{BD}{DC}\Rightarrow AB=\dfrac{BD.AC}{DC}=12cm\)
b, Vì DE // AB ta được \(\dfrac{CE}{AE}=\dfrac{CD}{BD}\)
Lại có AC/AB = DC/BD ( tỉ lệ thức của AD là pg)
\(\dfrac{CE}{AE}=\dfrac{AC}{AB}\Rightarrow CE.AB=AC.AE\)
cho tam giác abc vuống tại a có ab=6,ac=8. đường phân giác góc a cắt bc tại d. tính độ dài đoạn thẳng cd
cho tam giác abc vuống tại a có ab=6,ac=8. đường phân giác góc a cắt bc tại d. tính độ dài đoạn thẳng cd