tìm giá trị biểu thức A biết A= 1-2+3-4+5-6+...+2021-2022+2023
Câu 1:Giá trị của biểu thức : A = 5 - 2 + 3 - 4 +5 - 6 +...+2021 - 2022 + 2023 là:
A.2021 B. 2022 C.1016 D.1006
Câu 2:Hình tam giác ABC đều có:
A. AB = BC = CA C. AB < BC < CA
B. AB > BC > CA D. Độ dài AB,BC,CA khác nhau
Câu 3:Tập hợp A các số tự nhiên bao gồm các phần lớn hơn 5 và không vượt quá 8 là:
A. A ={6;7} B. A ={6;7;8} C. A ={5;6;7;8} D. A ={7;8}
Câu 4:
Câu 5:Tìm tổng tất cả số nguyên x,biết:-4 < x < 3
A.-3 B.0 C.1 D.-1
Câu 6:Cho tập hợp M = { 1;5;a;b } Trong các khẳng định sau,khẳng định sai là
A. 1 ∈ M B. c ∉ M C. a ∈ M D. b ∉ M
Câu 2: A
Câu 3: B
Câu 4: D
Câu 5: A
Câu 6: D
Tìm giá trị của biểu thức bt: \(a=\dfrac{2021}{2022},b=\dfrac{2023}{2022}\\ B=\dfrac{\dfrac{2ab}{3}-\dfrac{3ab}{2}}{\dfrac{-5bb}{6}}\)
\(B=\dfrac{\dfrac{2ab}{3}-\dfrac{3ab}{2}}{-\dfrac{5bb}{6}}\)
\(=\dfrac{\dfrac{4ab}{6}-\dfrac{9ab}{6}}{-\dfrac{5bb}{6}}\)
\(=\dfrac{-\dfrac{5ab}{6}}{-\dfrac{5bb}{6}}=\dfrac{ab.\dfrac{5}{6}}{bb.\dfrac{5}{6}}\)
\(=\dfrac{ab}{bb}=\dfrac{a}{b}\)
Với \(a=\dfrac{2021}{2022};b=\dfrac{2023}{2022}\), ta được:
\(B=\dfrac{2021}{2022}:\dfrac{2023}{2022}=\dfrac{2021}{2022}.\dfrac{2022}{2023}=\dfrac{2021}{2023}\)
Tính giá trị biểu thức:
A= 1-2-3+4+5-6-7+...+2021-2022-2023
=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+2021-2022-2023
=0+0+...+0-1-2023
=-2024
Câu 6. Giá trị nhỏ nhất của biểu thức A = (x – y)2 + (x – 1)2 + (y + 2)2 + 2021 là
A. 2021 B. 2022 C. 2023 D. 2024
Dẫu '' = '' xảy ra khi và chỉ khi ( x - y )2 + (x – 1)2 + (y + 2)2 = 0
tính giá trị biểu thức 4s-3*2023 biết s=1-3+3*2-3*3+.....-3*2021+3*2022
3S=3-3^2+...-3^2022+3^2023
=>4S=3^2023+1
=>4S-3^2023=1
1. Rút gọn các biểu thức sau:
A= 1 - 2 + 3 - 4 + 5 - 6 + ... + 2021 - 2022 + 2023
A=(-1)+(-1)+...+(-1)+2023
=2023-1011
=1012
a) tìm giá trị lớn nhất của biểu thức A = \(\dfrac{2022}{\left|x\right|+2023}\)
b) tìm giá trị nhỏ nhất của biểu thức B = \(\left(\sqrt{x}+1\right)^{99}+2022\) với \(x\ge0\)
c) tìm giá trị lớn nhất của biểu thức C = \(\dfrac{5-x^2}{x^2+3}\)
d) tìm giá trị lớn nhất của biểu thức D = \(\left|x-2022\right|+\left|x-1\right|\)
a) Để \(A=\dfrac{2022}{\left|x\right|+2023}\) đạt Max thì |x| + 2023 phải đạt Min
Ta có \(\left|x\right|\ge0\forall x\Rightarrow\left|x\right|+2023\ge2023\forall x\)
\(\Rightarrow\dfrac{2022}{\left|x\right|+2023}\le\dfrac{2022}{2023}\forall x\)
Dấu "=" xảy ra khi \(\left|x\right|=0\Rightarrow x=0\)
Vậy Max \(A=\dfrac{2022}{\left|x\right|+2023}=\dfrac{2022}{2023}\) đạt được khi x = 0
b) Để \(B=\left(\sqrt{x}+1\right)^{99}+2022\) đạt Min với \(x\ge0\) thì \(\sqrt{x}+1\) phải đạt Min
Ta có \(\sqrt{x}\ge0\forall x\ge0\Rightarrow\sqrt{x}+1\ge1\forall x\ge0\)
\(\Rightarrow\left(\sqrt{x}+1\right)^{99}+2022\ge1+2022\ge2023\forall x\ge0\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\Rightarrow x=0\)
Vậy Max \(B=\left(\sqrt{x}+1\right)^{99}+2022=2023\) đạt được khi x = 0
Câu c) và d) thì tự làm, ko có rảnh =))))
Cho ba số a,b,c thỏa mãn :
+) \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}\)
+) \(a+b+c=2022\\ \)
Tính giá trị của biểu thức P = \(\left(a^{2019}+b^{2019}\right)\left(c^{2021}+b^{2021}\right)\left(a^{2023}+c^{2023}\right)\)
oh no bài thứ nhất là dạng chứng minh cs đúng ko ,
ko thể nào là dạng tìm a,b,c đc-.-
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{2022}\)
hay \(\dfrac{ab+bc+ca}{abc}=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow\left(ab+bc+ca\right)\left(a+b+c\right)=abc\)
\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+3abc=abc\)
\(\Leftrightarrow a^2b+ab^2+b^2c+bc^2+c^2a+ca^2+2abc=0\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
-Xét a + b = 0 => P = 2022^2021
Bạn xét tương tự với b + c = 0 và c + a = 0 dc P = 2022^2021 nhé
a+bab+a+bc(a+b+c)=0a+bab+a+bc(a+b+c)=0
(a+b)[ab+bc+ca+c2abc(a+b+c)]=0(a+b)[ab+bc+ca+c2abc(a+b+c)]=0
(a+b)(b+c)(c+a)=0(a+b)(b+c)(c+a)=0
⇔ a=−b
⇔ b=−c
⇔ c=−a
Thay vào P từng cái rồi tính tiếp nhé
Tính giá trị của biểu thức, bt: \(a=\dfrac{2021}{2022};b=\dfrac{2023}{2022}\\ A=\dfrac{3.\dfrac{a}{b}-\dfrac{-a}{b}}{-\dfrac{5a}{b}+\dfrac{4a}{b}}\)
\(A=\dfrac{3\cdot\dfrac{a}{b}-\dfrac{-a}{b}}{-\dfrac{-5a}{b}+\dfrac{4a}{b}}\\ =\left(\dfrac{3a}{b}+\dfrac{a}{b}\right):\left(\dfrac{5a}{b}+\dfrac{4a}{b}\right)\\ =\dfrac{4a}{b}:\dfrac{9a}{b}\\ =\dfrac{4a}{b}\cdot\dfrac{b}{9a}\\ =\dfrac{4}{9}\)
Vậy `a=2021/2022` ; `b=2023/2022` thì `A=4/9`