Cho nửa đường tròn (O) đường kính AB, C là một điểm nằm trên đường tròn ( C khác A,B) (BC
Cho nửa đường tròn (O) đường kính AB. C là một điểm trên nửa đường tròn ( C khác A, C khác B, BC
Đề không đầy đủ. Bạn xem lại đề.
cho đường tròn (O) đường kính AB, C là một điểm trên nửa đường tròn (C khác A, C khác B, BC
Cho điểm C nằm trên nửa đường tròn tâm O đường kính AB = 2R (C khác A và B). Gọi K là trung điểm của BC. Qua B vẽ tia tiếp tuyến Bx với nửa đường tròn tâm O (tia Bx và C nằm cùng một nửa mặt phẳng có bờ AB), Bx cắt tia OK tại D. a) Chứng minh ODC = ODB, từ đó suy ra DC là tiếp tuyến của đường tròn tâm O. b) Chứng minh AC.OD = 2R2 c) Vẽ CH vuông góc với AB tại H, gọi I là trung điểm của CH. Tiếp tuyến tại A của đường tròn tâm O cắt tia BI tại E. Chứng minh E, C, D thẳng hàng.
Cho nửa đường tròn tâm O đường kính AB. C là một điểm nằm giữa O và A. Đường thẳng vuông góc với AB tại C cắt nửa đường tròn trên tại I. K là một điểm bất kỳ nằm trên đoạn thẳng CI (K khác C và I), tia AK cắt nửa đường tròn (O) tại M, tia BM cắt tia CI tại D. Chứng minh:
1) Các tứ giác: ACMD; BCKM nội tiếp đường tròn.
2) CK.CD = CA.CB
3) Gọi N là giao điểm của AD và đường tròn (O) chứng minh B, K, N thẳng hàng
1:
góc AMB=1/2*sđ cung AB=90 độ
=>AM vuông góc BD
góc ACD=góc AMD=90 độ
=>ACMD nội tiếp
góc KCB+góc KMB=180 độ
=>BMKC nội tiếp
2: Xét ΔCAK vuông tại C và ΔCDB vuông tại C có
góc CAK=góc CDB
=>ΔCAK đồng dạng với ΔCDB
=>CA/CD=CK/CB
=>CA*CB=CD*CK
Cho nửa đường tròn tâm O đường kính AB. C là một điểm nằm giữa O và A. Đường thẳng vuông góc với AB tại C cắt nửa đường tròn trên tại I. K là một điểm bất kì nằm trên đoạn thẳng CI (K khác C và I), tia AK cắt nửa đường tròn (O) tại M, tia BM cắt CI tại D. Chứng minh :
a) Các tứ giác : ACMD ; BCKM nội tiếp đường tròn
b) CK.CD = CA.CB
c) Gọi N là giao điểm của AD và (O). Chứng minh rằng : B, K, M thẳng hàng
cho nửa đường tròn (O) đường kính AB và C là một điểm thuộc nửa đường tròn sao C khác A, B và AC < CB . Điểm D nằm trên dây cung BC sao cho \(\widehat{DOC}=90^0\) E là giao điểm của AD và BC. F là giao điểm của AC và BD.
a) chứng minh tứ giác CEDF nội tiếp
b) chúng minh FC.FA= FD.FB
c) Gọi I là trung điểm của FE. Chứng minh rằng IC IC là tiếp tuyến của (O)
d) Khi C thay đổi thỏa mãn điều kiện của bài toán thì I thuộc đường tròn cố định nào?
Cho nửa đường tròn (O), đường kính AB và một điểm C nằm trên nửa đường tròn. Gọi D là một điểm nằm trên đường kính AB, qua D kẻ đường vuông góc với AB, cắt BC tại F, cắt AC tại E. Tiếp tuyến của nửa đường tròn tại C cắt EF tại I. c/m
a) I là trung điểm EF
b) OC là tiếp tuyến của (ECF)
a: Xét (O) có
ΔABC nội tiếp
AB là đường kính
Do đó: ΔABC vuông tại C
=>BC\(\perp\)AC tại C
=>BC\(\perp\)AE tại C
=>ΔCEF vuông tại C
Xét (O) có
\(\widehat{ICB}\) là góc tạo bởi tiếp tuyến CI và dây cung CB
\(\widehat{CAB}\) là góc nội tiếp chắn cung CB
Do đó: \(\widehat{ICB}=\widehat{CAB}\)
mà \(\widehat{CAB}=\widehat{BFD}\left(=90^0-\widehat{CBA}\right)\)
nên \(\widehat{ICB}=\widehat{BFD}\)
mà \(\widehat{BFD}=\widehat{IFC}\)(hai góc đối đỉnh)
nên \(\widehat{ICB}=\widehat{IFC}\)
=>\(\widehat{ICF}=\widehat{IFC}\)
=>IC=IF
Ta có: \(\widehat{ICF}+\widehat{ICE}=\widehat{ECF}=90^0\)
\(\widehat{IFC}+\widehat{IEC}=90^0\)(ΔECF vuông tại C)
mà \(\widehat{ICF}=\widehat{IFC}\)
nên \(\widehat{ICE}=\widehat{IEC}\)
=>IC=IE
mà IC=IF
nên IE=IF
=>I là trung điểm của EF
b: Vì ΔCEF vuông tại C
nên ΔCEF nội tiếp đường tròn đường kính EF
=>ΔCEF nội tiếp (I)
Xét (I) có
IC là bán kính
OC\(\perp\)CI tại C
Do đó: OC là tiếp tuyến của (I)
Cho nửa đường tròn tâm O đường kính AB ,C là một điểm nằm giữa O và A .Đường thẳng vuông góc với AB tại C cắt nửa đường tròn trên tại I ,K là một điểm nằm bất kì trên đoạn thẳng CI (K khác C và I) tia AK cắt nửa đường tròn O tại M tia BM cắt tia CI tại D .Chứng minh : a)Các tứ giác ACMD,BCKM nội tiếp đường tròn b)CK.CD=CA.CB c) Gọi N là giao điểm của AD và đường tròn O chứng minh B,K,N thẳng hàng
Cho nửa đường tròn tâm O đường kính AB. Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, kẻ hai tiếp xuyến Ax, By với nửa đường tròn. M là một điểm nằm trên nửa đường tròn (M khác A và B), từ M kẻ tiếp tuyến với nửa đường tròn cắt Ax, By lần lượt tại C và D
a: Xét (O) có
CM là tiếp tuyến có M là tiếp điểm
CA là tiếp tuyến có A là tiếp điểm
Do đó: CM=CA
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm
DB là tiếp tuyến có B là tiếp điểm
Do đó: DM=DB
Ta có: CM+MD=CD
mà CM=CA
và DM=DB
nên CD=CA+DB