a: Xét (O) có
CM là tiếp tuyến có M là tiếp điểm
CA là tiếp tuyến có A là tiếp điểm
Do đó: CM=CA
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm
DB là tiếp tuyến có B là tiếp điểm
Do đó: DM=DB
Ta có: CM+MD=CD
mà CM=CA
và DM=DB
nên CD=CA+DB
a: Xét (O) có
CM là tiếp tuyến có M là tiếp điểm
CA là tiếp tuyến có A là tiếp điểm
Do đó: CM=CA
Xét (O) có
DM là tiếp tuyến có M là tiếp điểm
DB là tiếp tuyến có B là tiếp điểm
Do đó: DM=DB
Ta có: CM+MD=CD
mà CM=CA
và DM=DB
nên CD=CA+DB
Cho nửa đường tròn (O), đường kính AB. TừA và B kẻ hai tia Ax và By vuông góc với AB ( Ax, By cùng nằm trên nửa mặt phẳng với nửa đường tròn bờ là AB). Trên nửa đường tròn lấy điểm M bất kỳ, tiếp tuyến với nửa đường tròn cắt Ax, By lần lượt tại C và D.
a) Chứng minh góc COD vuông.
b) Chứng minh CD = AC + BD.
c) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
d) Gọi I là giao điểm của AD và BC. Chứng minh MI ⊥ AB.
Cho nửa đường tròn (O) đường kính AB. Trên cùng nửa mặt phẳng bờ chứa AB kẻ tiếp tuyến Ax và By với nử đường tròn tâm O. Qua C bất kì trên nửa đường tâm O (C khác A và B) kẻ tiếp tuyến đối với nửa đường tròn tâm O, tiếp tuyến này cắt Ax, By lần lượt ở M và N.
Gọi K là giao điểm của AN và BM, CK cắt AB tại H. Chứng minh K là trung điểm của CH
Cho nửa đường tròn (O;R) đường kính AB. Trên cùng một nửa mặt phẳng bờ AB chứa nửa đường tròn (O), vẽ hai tiếp tuyến Ax, By của nửa đường tròn. Từ điểm M thuộc nửa đường tròn (O) vẽ tiếp tuyến thứ ba cắt Ax, By lần lượt tại C và D. Tia BM cắt Ax tại K. Nối OC cắt AM tại E, nối OD cắt BM tại F.
- Kẻ MN vuông góc AB tại N. CM ONEF là hình thang cân.
Cho nửa đường tròn tâm O, đường kính AB. Kẻ hai tiếp tuyến Ax, By (Ax, By và nửa đường tròn thuộc cùng một nửa mặt phẳng bờ AB). Gọi C là một điểm trên tia Ax, kẻ tiếp tuyến CM với nửa đường tròn (M là tiếp điểm), CM cắt By ở D.
a) Tính số đo góc COD.
b) Gọi I là giao điểm của OC và AM, K là giao điểm của OD và MB. Tứ giác OIMK là hình gì? Vì sao?
c) Chứng minh tích AC.BD không đổi khi C di chuyển trên Ax.
d) Chứng minh AB là tiếp tuyến của đường tròn đường kính CD.
MN giúp bé bài này với :(((
Cho nửa đường tròn tâm O có đường kính AB=2R. Kẻ hai tiếp tuyến Ax,By của nửa đường tròn (O) tại A và B (Ax,By và nửa đường tròn thuộc cùng một nửa mặt phẳng có bờ là đường thẳng AB).Qua điểm M thuộc nửa đường tròn (M khác A và B), kẻ tiếp tuyến với nửa đường tròn, cắt tia Ax và By theo thứ tự tại C và D. 1.chứng minh tam giác COD vuông tại O; 2.chứng minh AC.BD=R²; 3.kẻ MH vuông AB (H thuộc AB).chứng minh rằng BC đi qua trung điểm của đoạn MH-
Bài 2:
Cho nửa đường tròn (O; R) đường kính AB, kẻ tiếp tuyến Ax, By với nửa đường tròn (Ax, By nằm cùng nửa mặt phẳng bờ AB). Tiếp tuyến tại I với nửa đường tròn (O)
(I khác A, B) cắt Ax, By lần lượt tại M, N.
a) Chứng minh tứ giác AMIO nội tiếp và AM + BN = MN
b) Chứng minh góc MON = 900 và AM. BN = R2.
c) Gọi H là giao điểm của AN và BM, tia IH cắt AB tại K. Chứng minh H là trung điểm của IK
d) Cho AB = 5cm, diện tích tứ giác ABNM là 20cm2. Tính diện tích của tam giác AIB.
Cho nửa đường tròn (O; R) đường kính AB, kẻ tiếp tuyến Ax, By với nửa đường tròn (Ax, By nằm cùng nửa mặt phẳng bờ AB). Tiếp tuyến tại I với nửa đường tròn (O)
(I khác A, B) cắt Ax, By lần lượt tại M, N.
a) Chứng minh tứ giác AMIO nội tiếp và AM + BN = MN
b) Chứng minh góc MON = 900 và AM. BN = R2.
c) Gọi H là giao điểm của AN và BM, tia IH cắt AB tại K. Chứng minh H là trung điểm của IK
d) Cho AB = 5cm, diện tích tứ giác ABNM là 20cm2. Tính diện tích của tam giác AIB.
Cho nửa đường tròn tâm O bán kính R, đường kính ab chứa nửa đường tròn, kẻ hai tiếp tuyến Ax và By với đường tròn. M là một điểm bất kỳ trên nửa đường tròn. Tiếp tuyến tại M cắt Ax, By lần lượt tại C và D.
a) CMR: CD = AC + BD và góc COD vuông
b) CMR: \(AC.BD=R^2\)
c) OC cắt AM tại E; OD cắt BM tại F, chứng minh EF = R
Cho nửa đường tròn (O) đường kính AB. Gọi Ax; By là các tia vuông góc với AB.(Ax ; By và nửa đường tròn cùng thuộc một nửa mặt phẳng bờ AB).Qua điểm M thuộc nửa đường tròn ( M khác A và B), kẻ tiếp tuyến với nửa đường tròn, nó cắt Ax tại C và cắt By tại D
A) c/m CD=AC+BD và COD = 90
B) AD cắt BC tại N. Chứng minh: MN//BD
C) Gọi H là trung điểm của AM. Chứng minh: ba điểm O, H , C thẳng hàng
giúp tớ câu b và c thôi ạ