cho hình vẽ bên biết ac = ec , bc = cd.
a) chứng minh abc = edc
b) chứng minh ab = ed
Cho ABC có AB = 3 cm; AC = 4 cm; BC = 5 cm. a) Chứng tỏ tam giác ABC vuông tại A. b)Vẽ phân giác BD (D thuộc AC), từ D vẽ DE BC (E BC). Chứng minh DA = DE. c) ED cắt AB tại F. Chứng minh ADF = EDC rồi suy ra DF > DE.
Cho ABC vuông tại A, biết AB =3cm; AC =4cm. a) Tính BC.So sánh các cạnh của tam giác ABC b) Vẽ phân giác BD của góc ABC (D thuộc AC),từ D vẽ DE trung điểm BC(E thuộc BC) c) ED cắt AB tại F.Chứng minh tam giác ADF=tam giác EDC d) Chứng minh AB+AF
a: BC=căn 3^2+4^2=5cm
b,d: Đề bài yêu cầu gì?
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
Cho ABC có AB= 3cm, AC= 4cm, BC- 5cm
a) Vẽ hình, ghi GT,KL
b) Chứng tỏ tam giác ABC vuông tại A
c) Vẽ phân giác BD( D thuộc AC), Gọi E là hình chiếu của D trên BC (E thuộc BC). Chứng minh DA=DE
d) ED cắt AB tại F. Chứng minh tam giác ABC = tam giác EDC rồi suy ra DF> DE
Cho ABC vuông tại A, biết AB =3cm; AC =4cm. a) Tính BC.So sánh các cạnh của tam giác ABC b) Vẽ phân giác BD của góc ABC (D thuộc AC),từ D vẽ DE trung điểm BC(E thuộc BC) c) ED cắt AB tại F.Chứng minh tam giác ADF=tam giác EDC d) Chứng minh AB+AF
a: BC=căn 3^2+4^2=5cm
AB<AC<BC
=>góc C<góc B<góc A
c: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>DA=DE
Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=góc EDC
=>ΔDAF=ΔDEC
Cho ABC có AB = 3cm; AC = 4cm; BC = 5cm.
a, Chứng tỏ tam giác ABC vuông tại A
b, Vẽ phân giác BD (D thuộc AC), từ D vẽ DE ⊥ BC (E ϵ BC), Chứng minh DA = DE.
c, ED cắt AB tại F. Chứng minh △ADF = △EDC rồi suy ra DF > DE
a, Ta có \(BC^2=AB^2+AC^2\Leftrightarrow25=9+16\)( luôn đúng )
Vậy tam giác ABC vuông tại A(pytago đảo)
b, Xét tam giác BAD và tam giác BED có
^ABD = ^EBD ; BD _ chung
Vậy tam giác BAD = tam giác BED ( ch-gn)
=> DA = DE ( 2 cạnh tương ứng )
c, Xét tam giác ADF và tam giác EDC có
DA = DE ; ^ADF = ^EDC ( đối đỉnh )
Vậy tam giác ADF = tam giác EDC ( ch-cgv)
=> DF = DC ( 2 cạnh tương ứng )
mà DC > DE ( cạnh huyền lớn hơn cạnh góc vuông tam giác DEC vuông tại E )
=> DF > DE
cho tam giác abc có ab=3 ac=4 bc=5
a, chứng minh tam giác abc vuông tại a
b, vẽ phân giác bd (d thuộc ac ) , từ d vẽ de vuông góc với bc (e thuộc bc ) chứng minh da=de
c,ed cắt ab tại f . chứng minh tam giác adf=edc rồi suy ra df>de
a) Xét ΔABC có \(BC^2=AB^2+AC^2\left(5^2=3^2+4^2\right)\)
nên ΔABC vuông tại A(Định lí Pytago đảo)
b) Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))
Do đó: ΔABD=ΔEBD(Cạnh huyền-góc nhọn)
Suy ra: DA=DE(hai cạnh tương ứng)
c) Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE(cmt)
\(\widehat{ADF}=\widehat{EDC}\)(hai góc đối đỉnh)
Do đó: ΔADF=ΔEDC(Cạnh góc vuông-góc nhọn kề)
Suy ra: DF=DC(Hai cạnh tương ứng)
mà DC>DE(ΔDEC vuông tại E)
nên DF>DE
Cho ABC có AB=3;AC=4;BC=5.
a) Chứng minh tam giác ABC vuông tại A.
b) Vẽ phân giác BD (D thuộc AC),từ D vẽ DE vuông góc với BC (E thuộc BC).Chứng minh DA=DE.
c) Kẻ ED cắt AB tại F.Chứng minh chứng minh tam giác ADF= tam giác EDC rồi suy ra DF>DE
Cho ABC có AB =3cm, AC=4 cm, BC=5cm.
a) Chứng minh tam giác ABC vuông
b) Vẽ phân giác BD (D thuộc AC) , từ D vẽ DE ⊥BC (E thuộc BC) .Chứng minh DA=DE.
c) ED cắt AB tại F. Chứng minh △ADF =△EDC rồi suy ra DF > DE
a) Xét ΔABC có \(BC^2 = AC^2 + AB^2 (5^2 = 3^2 + 4^2)\)
⇒ ΔABC vuông tại A
b) Xét ΔABD và ΔAED
có góc ABD và góc AED cùng vuông
BAD=EAD
⇒ΔABD = ΔAED (ch-gn)
c) Mình nghĩ phần này bạn sai đề rồi, phải làm tam giác BED và EDC chứ DE=DF mà bạn
c) Xét \(\Delta AFD\) và \(\Delta ECD\) có :
AD = DE ; \(\widehat{FAD}=\widehat{DEC}=90^o\) ; \(\widehat{FDA}=\widehat{EDC}\) ( đối đỉnh )
\(\Rightarrow\) \(\Delta AFD\) = \(\Delta ECD\) ( gcg)
\(\Rightarrow\) DF = CD
Xét \(\Delta EDC\) vuông tại E
\(\Rightarrow\) DC > DE ( ch> cgv )
mà DF = DC => DF > DE
Cho ABC có AB = 3 cm; AC = 4 cm; BC = 5 cm.
a) Chứng tỏ tam giác ABC vuông tại A.
b)Vẽ phân giác BD (D thuộc AC), từ D vẽ DE ( BC (E ( BC). Chứng minh DA = DE.
c) ED cắt AB tại F. Chứng minh (ADF = (EDC rồi suy ra DF > DE.