a) Xét ΔABC có \(BC^2 = AC^2 + AB^2 (5^2 = 3^2 + 4^2)\)
⇒ ΔABC vuông tại A
b) Xét ΔABD và ΔAED
có góc ABD và góc AED cùng vuông
BAD=EAD
⇒ΔABD = ΔAED (ch-gn)
c) Mình nghĩ phần này bạn sai đề rồi, phải làm tam giác BED và EDC chứ DE=DF mà bạn
c) Xét \(\Delta AFD\) và \(\Delta ECD\) có :
AD = DE ; \(\widehat{FAD}=\widehat{DEC}=90^o\) ; \(\widehat{FDA}=\widehat{EDC}\) ( đối đỉnh )
\(\Rightarrow\) \(\Delta AFD\) = \(\Delta ECD\) ( gcg)
\(\Rightarrow\) DF = CD
Xét \(\Delta EDC\) vuông tại E
\(\Rightarrow\) DC > DE ( ch> cgv )
mà DF = DC => DF > DE