Gieo ngẫu nhiên 1 con xúc xắc cân đối đồng chất 2 lần. Tìm xác suất của biến cố: a) Lần thứ nhất xuất hiện mặt 3 chấm? b) Ít nhất 1 lần xuất hiện mặt 2 chấm? c) Tổng số chấm của 2 lần không lớn hơn 5?
Gieo một con xúc xắc cân đối, đồng chất liên tiếp hai lần. Xét các biến cố sau:
A: “Ở lần gieo thứ nhất, số chấm xuất hiện trên con xúc xắc là 1”;
B: “Ở lần gieo thứ hai, số chấm xuất hiện trên con xúc xắc là 2”
C: “Tổng số chấm xuất hiện trên con xúc xắc ở hai lần gieo là 8”
D: “Tổng số chấm xuất hiện trên con xúc xắc ở hai lần gieo là 7”.
Chứng tỏ rằng các cặp biến cố A và C; B và C, C và D không độc lập.
Không gian mẫu là tập hợp số chấm xuất hiện khi gieo con xúc xắc hai lần liên tiếp khi đó \(n\left( \Omega \right) = 6.6 = 36\)
A = {(1; 1); (1; 2); (1; 3); (1; 4); (1; 5); (1; 6)} \( \Rightarrow P\left( A \right) = \frac{6}{{36}} = \frac{1}{6}\)
B = {(1; 2); (2; 2); (3; 2); (4; 2); (5; 2); (6; 2)} \( \Rightarrow P\left( B \right) = \frac{6}{{36}} = \frac{1}{6}\)
C = {(2; 6); (3; 5); (4; 4); (5; 3); (6; 2)} \( \Rightarrow P\left( C \right) = \frac{5}{{36}}\)
D = {(1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1)} \( \Rightarrow P\left( D \right) = \frac{6}{{36}} = \frac{1}{6}\)
Do đó
\(P\left( A \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( B \right).P\left( C \right) = \frac{1}{6}.\frac{5}{{36}} = \frac{5}{{216}};P\left( C \right).P\left( D \right) = \frac{5}{{36}}.\frac{1}{6} = \frac{5}{{216}}\)
Mặt khác
AC = \(\emptyset \Rightarrow P\left( {AC} \right) = 0\)
BC = {(6; 2)} \( \Rightarrow P\left( {BC} \right) = \frac{1}{{36}}\)
CD = \(\emptyset \Rightarrow P\left( {CD} \right) = 0\)
Khi đó \(P\left( {AC} \right) \ne P\left( A \right).P\left( C \right);P\left( {BC} \right) \ne P\left( B \right).P\left( C \right);P\left( {CD} \right) \ne P\left( C \right).P\left( D \right)\)
Vậy các cặp biến cố A và C; B và C, C và D không độc lập.
a. Có 3 mặt nguyên tố: 2,3,5 nên xác suất xuất hiện số nguyên tố ở mỗi lần gieo là \(\dfrac{3}{6}=\dfrac{1}{2}\)
Xác suất 2 lần đều xuất hiện số nguyên tố: \(\dfrac{1}{2}.\dfrac{1}{2}=\dfrac{1}{4}\)
b. Xác suất để lần 1 xuất hiện mặt 6 chấm: \(\dfrac{1}{6}\)
c. Xác suất ít nhất 1 lần xuất hiện mặt 6 chấm: \(\dfrac{2.6-1}{36}=\dfrac{11}{36}\)
d. Xác suất ko lần nào xuất hiện 6 chấm: \(1-\dfrac{11}{36}=\dfrac{25}{36}\)
Gieo một xúc xắc hai lần liên tiếp. Tính xác suất của mỗi biến cố sau:
a) “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”;
b) “Mặt 1 chấm xuất hiện ít nhất một lần”.
Không gian mẫu trong trò chơi trên là tập hợp \(\Omega = \left\{ {(i,j)|i,j = 1,2,3,4,5,6} \right\}\)trong đó (i,j) là kết quả “Lần thứ nhất xuất hiện mặt i chấm, lần thứ hai xuất hiện mặt j chấm”. Vậy \(n(\Omega ) = \;36.\)
a) Gọi A là biến cố “Tổng số chấm xuất hiện trong hai lần gieo không bé hơn 10”.
Các kết quả có lợi cho A là: (4; 6) (5;5) (5;6) (6; 4) (6;5) (6;6). Vậy \(n(A) = \;6.\)
Vậy xác suất của biến cố A là \(P(A) = \;\frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{36}} = \frac{1}{6}.\)
b) Gọi B là biến cố “Mặt 1 chấm xuất hiện ít nhất một lần”.
Các kết quả có lợi cho B là: (1; 1) (1 : 2) (1 : 3) (1; 4) (1;5) (1; 6) (2 ; 1) (3;1) (4; 1) (5;1) (6;1). Vậy \(n(B) = \;11.\)
Vậy xác suất của biến cố B là: \(P(B) = \;\frac{{n(B)}}{{n(\Omega )}} = \frac{{11}}{{36}}.\)
Gieo ngẫu nhiên xuất sắc một lần. tính xác suất của biến cố :
a ) mặt xuất hiện của xúc xắc có số chấm là số chia 3 dư 1
b ) mặt xuất hiện của xúc xắc có số chấm là số lớn hơn 2
a: \(\Omega=\left\{1;2;3;4;5;6\right\}\)
=>n(omega)=6
A={1;4}
=>n(A)=2
=>P(A)=2/6=1/3
b: B={3;4;5;6}
=>n(B)=4
=>P(B)=4/6=2/3
Gieo ngẫu nhiên 5 con xúc xắc cân đối và đồng chất 6 lần liên tiếp. Tính xác suất của biến cố A: Tổng số chấm xuất hiện của 5 con xúc xắc sau 6 lần gieo là số chia hết cho 6
Gieo ngẫu nhiên con xúc xắc cân đối và đồng chất một lần. Đâu là các kết quả thuận lợi của biến cố: “Mặt xuất hiện trên con xúc xắc là ước của 6”?
A. {1 chấm, 2 chấm}
B. {1 chấm, 2 chấm, 3 chấm}
C. {1 chấm, 2 chấm, 3 chấm, 6 chấm}
D. {1 chấm, 2 chấm, 4 chấm, 6 chấm}
gieo 1 con xúc xắc cân dối dồng chất 2 lần xét biến cố A lần thứ 2 xuất hiện mặt có số chấm lơn hơn 4 tính xác suất biến cố A
Không gian mẫu: 36
Có 2 trường hợp mặt thứ 2 xuất hiện số chấm lớn hơn 4 (5 và 6)
Do đó xác suất: \(P=\dfrac{2.6}{36}=\dfrac{1}{3}\)
Gieo ngẫu nhiên một con súc sắc cân đối và đồng chất 2 lần. Tính xác suất của các biến cố
A: “ Mặt 6 chấm xuất hiện ở lần gieo đầu tiên”
B: “Số chấm ở 2 lần gieo như nhau”
C: “Tổng số chấm xuất hiện ở hai lần gieo bằng 9”
Xét một con xúc xắc cân đối và đồng chất một số chấm ở mỗi mặt là một trong các số 1, 2, 3, 4, 5, 6 (Hình 32). Gieo ngẫu nhiên xúc xắc một lần. Khi đó khả năng xuất hiện từ mặt của con xúc xắc là như nhau.
Xét biến cố “Mặt xuất hiện của xúc xắc có số chấm là số lẻ”.
Làm thế nào để phản ánh được khả năng xảy ra của biến cố trên?
Để phản ánh được khả năng xảy ra của biến cố trên ta tính xác suất của biến cố đó trong trò chơi giao xúc xắc.
Xác suất của biến cố trong trò chơi này bằng tỉ số của số các kết quả thuận lợi cho biến cố và số các kết quả có thể xảy ra đối với mặt xuất hiện của xúc xắc.