Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
ánh tuyết nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2022 lúc 23:00

Câu 2:

\(\Leftrightarrow\dfrac{\left(n+2\right)!}{2!\cdot n!}-4\cdot\dfrac{\left(n+1\right)!}{n!\cdot1!}=2\left(n+1\right)\)

\(\Leftrightarrow\dfrac{\left(n+1\right)\left(n+2\right)}{2}-4\cdot\dfrac{n+1}{1}=2\left(n+1\right)\)

\(\Leftrightarrow\left(n+1\right)\left(n+2\right)-8\left(n+1\right)=4\left(n+1\right)\)

=>(n+1)(n+2-8-4)=0

=>n=-1(loại) hoặc n=10

=>\(A=\left(\dfrac{1}{x^4}+x^7\right)^{10}\)

SHTQ là: \(C^k_{10}\cdot\left(\dfrac{1}{x^4}\right)^{10-k}\cdot x^{7k}=C^k_{10}\cdot1\cdot x^{11k-40}\)

Số hạng chứa x^26 tương ứng với 11k-40=26

=>k=6

=>Số hạng cần tìm là: \(210x^{26}\)

Đào Trần Tuấn Anh
Xem chi tiết
Lê Tài Bảo Châu
18 tháng 4 2019 lúc 22:01

\(\Rightarrow\frac{7}{6}< |x-\frac{2}{3}|< \frac{26}{9}\)

\(\Rightarrow\frac{21}{18}< |x-\frac{2}{3}|< \frac{52}{18}\)

Rùi tự thay vào 

Minh Nguyen
20 tháng 3 2020 lúc 12:35

\(\frac{\sqrt{49}}{6}< \left|x-\frac{2}{3}\right|< \frac{26}{\sqrt{81}}\)

\(\Leftrightarrow\frac{7}{6}< \left|x-\frac{2}{3}\right|< \frac{26}{9}\)

\(\Leftrightarrow\frac{7}{6}< 2\le\left|x-\frac{2}{3}\right|\le2< \frac{26}{9}\)

\(\Leftrightarrow\left|x-\frac{2}{3}\right|=2\)

\(\Leftrightarrow\orbr{\begin{cases}x-\frac{2}{3}=2\\x-\frac{2}{3}=-2\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{8}{3}\\x=--\frac{4}{3}\end{cases}}\)

Vậy \(x\in\left\{\frac{8}{3};-\frac{4}{3}\right\}\)

Khách vãng lai đã xóa
ngọc linh
Xem chi tiết
Nguyễn Duy Khang
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 6 2023 lúc 20:30

a: ĐKXĐ: 3x^2+15/-6>=0

=>3x^2+15<=0(vô lý)

b: ĐKXĐ: -81/-x^2-12>=0

=>-x^2-12<0

=>-x^2<12

=>x^2>-12(luôn đúng)

c: ĐKXĐ: 31(x^2+21)/3>=0

=>x^2+21>=0(luôn đúng)

d: ĐKXĐ: -12/x^2+11>=0

=>x^2+11<0(vô lý)

e: ĐKXĐ: 21/-x^2-17>=0

=>-x^2-17>0

=>x^2+17<0(vô lý)

Võ Thùy Trang
Xem chi tiết
Lấp La Lấp Lánh
25 tháng 9 2021 lúc 20:19

a) \(M=\dfrac{\sqrt{x}}{\sqrt{x}-1}-\dfrac{6\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\left(x\ge0,x\ne1\right)\)

\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)-6\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{x-4\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\)

b) \(M=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}=1-\dfrac{5}{\sqrt{x}+2}\in Z\)

\(\Rightarrow\sqrt{x}+2\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)

Do \(\sqrt{x}\ge0\forall x\)

\(\Rightarrow\sqrt{x}\in\left\{3\right\}\Rightarrow x=9\left(tm\right)\)

Hải Lục Vũ
Xem chi tiết
Nguyễn Ngọc Thùy Duyên
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 7 2021 lúc 14:12

a) Ta có: \(A=\left(\dfrac{2}{\sqrt{x}-3}+\dfrac{2\sqrt{x}}{x-4\sqrt{x}+3}\right):\dfrac{2\left(x-2\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\dfrac{2\left(\sqrt{x}-1\right)+2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}:\dfrac{2\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)}\)

\(=\dfrac{4\sqrt{x}-2}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{1}{2\left(\sqrt{x}-1\right)}\)

\(=\dfrac{2\sqrt{x}-1}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)^2}\)

minh ngọc
Xem chi tiết
HT.Phong (9A5)
16 tháng 8 2023 lúc 13:19

\(\left(\dfrac{1}{\sqrt{x}}-\sqrt{x}\right):\left(\dfrac{1-\sqrt{x}}{x+\sqrt{x}}\right)\) (ĐK: \(x>0\))

\(=\left(\dfrac{1}{\sqrt{x}}-\dfrac{x}{\sqrt{x}}\right)\cdot\dfrac{-\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{-\sqrt{x}}\cdot\dfrac{-\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)

\(=\dfrac{-\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{-\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\left(\sqrt{x}+1\right)^2\)

Nguyễn Lê Phước Thịnh
17 tháng 8 2023 lúc 0:43

c: loading...

b; 

 

Sửa đề: \(\dfrac{x\sqrt{x}+26\sqrt{x}-19}{x+2\sqrt{x}-3}-\dfrac{2\sqrt{x}}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)\(=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2\sqrt{x}\left(\sqrt{x}+3\right)+\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x\sqrt{x}+26\sqrt{x}-19-2x-6\sqrt{x}+x-4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)

\(=\dfrac{x\sqrt{x}-x+16\sqrt{x}-16}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}=\dfrac{x+16}{\sqrt{x}+3}\)