Thực hiện phép tính
a) (2x2-32):(x-4)
b) 5x+2 phần 3xy2 : 10x+4 phần x2y
Bài 1: Thực hiện phép tính
a/ 5x2y (x2y– 4xy2 + 7xy)
b/ 3xy2 (x2y3 + x 2y – xy2 )
c/ 3x(12x2 + 4x – 5) + 2x(9x2 – 6x + 7)
d/ 5x(2x2 – 9x – 5) – 9x (x2 - 7x – 4)
a/ 5x2y (x2y– 4xy2 + 7xy)
`=5x^4y^2-20x^3y^3+35x^3y^2`
b/ 3xy2 (x2y3 + x 2y – xy2 )
`=3x^3y^5+3x^3y^3-3x^2y^4`
c/ 3x(12x2 + 4x – 5) + 2x(9x2 – 6x + 7)
`=36x^3+12x^2-15x+18x^3-18x^2+14x`
`=54x^3-6x^2-x`
d/ 5x(2x2 – 9x – 5) – 9x (x2 - 7x – 4)
`=10x^3-45x^2-25x-9x^3+63x^2+36x`
`=x^3+18x^2+11x`
Thực hiện phép tính
a) (-x3+2x4-4-x2+7x):(x2+x-1)
b) y phần 2x2-xy + 4x phần y2-2xy
c) 6x+48 phần 7x-7 : x2-64 phần x2-2x+1
a: \(\dfrac{2x^4-x^3-x^2+7x-4}{x^2+x-1}\)
\(=\dfrac{2x^4+2x^3-2x^2-3x^3-3x^2+3x+4x^2+4x-4}{x^2+x-1}\)
=2x^2-3x+4
b: \(=\dfrac{y}{x\left(2x-y\right)}+\dfrac{4x}{y\left(y-2x\right)}\)
\(=\dfrac{y^2-4x^2}{xy\left(2x-y\right)}=\dfrac{-\left(2x-y\right)\left(2x+y\right)}{xy\left(2x-y\right)}=\dfrac{-2x-y}{xy}\)
c: \(=\dfrac{6\left(x+8\right)}{7\left(x-1\right)}\cdot\dfrac{\left(x-1\right)^2}{\left(x-8\right)\left(x+8\right)}=\dfrac{6\left(x-1\right)}{7\left(x-8\right)}\)
Bài 1 (2,0 điểm). Thực hiện các phép tính:
a) 2x2(3x – 5). b) (12x3y + 10x2y) : 2x2y.
Bài 2 (1,5 điểm). Phân tích đa thức thành nhân tử:
a) x2y + xy2. b) x2 – 2x + 1 – 4y2. c) x2 – 5x + 4.
Bài 3 (1,0 điểm). Tìm x biết:
a) x2 – x(x – 3) – 6 = 0. b) 5(x + 2) – x2 – 2x =
Bài 5 (3,5 điểm). Cho °ABC, A= 90. Vẽ AH ^ BC tại H. Biết AB = 15cm, BC = 25cm.
a) Tính AC và diện tích °ABC.
b) Từ H vẽ HM ^ AB tại M, HN ^ AC tại N. Chứng minh AMHN là hình chữ nhật.
c) Trên tia đối của tia AC lấy điểm D sao cho AD = AN. Chứng minh tứ giác ADMH là hình bình hành.
d) Gọi K là điểm đối xứng của B qua A. Gọi I, E lần luợt là trung điểm của AH và BH. Chứng minh CI ^ HK.
\(a\text{)}x^2y+xy^2=xy\left(x+y\right)\)
\(b\text{)}x^2-2x+1=\left(x-1\right)^2\)
\(c\text{)}x^2-5x+4=\left(x-1\right)\left(x-4\right)\)
Bài 1:
a: \(=6x^3-10x^2\)
b: \(=6x+5\)
Thực hiện phép tính : 4 phần x+2 cộng 3 phần x-2cộng -5x-2 phần x2-4\
\(\frac{4}{x+2}+\frac{3}{x-2}+\frac{-5x-2}{x^2-4}\)ĐK : \(x\ne\pm2\)
\(=\frac{4\left(x-2\right)+3\left(x+2\right)-5x-2}{\left(x+2\right)\left(x-2\right)}=\frac{4x-8+3x+6-5x-2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{2x-4}{\left(x+2\right)\left(x-2\right)}=\frac{2\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=\frac{2}{x+2}\)
Thực hiện phép tính:
a) (x2y - xy + xy2 + y3). 3xy2; b)(2x3-9x2+19x-15):(x2-3x+5)
c)(x3 - 3x2 + x - 3):( x - 3)
\(a,=3x^3y^3-3x^2y^3+3x^2y^4+3xy^5\\ b,=\left(2x^3-6x^2+10x-3x^2+9x-15\right):\left(x^2-3x+5\right)\\ =\left[2x\left(x^2-3x+5\right)-3\left(x^2-3x+5\right)\right]:\left(x^2-3x+5\right)\\ =2x-3\\ c,=\left[x^2\left(x-3\right)+\left(x-3\right)\right]:\left(x-3\right)=x^2+1\)
Thực hiện phép chia:
a) ( x 3 - 2 x 2 - 15x + 36) : (x + 4);
b) ( 2 x 4 + 2 x 3 + 3 x 2 - 5x - 20) : ( x 2 + x + 4);
c) (2 x 3 + 11 x 2 + 18x-3) : (2x + 3);
d) (2x3 + 9x2 +5x + 41) : (2x2 - x + 9).
a) Đa thức thương x 2 – 6x + 9.
b) Đa thức thương 2 x 2 – 5.
c) Đa thức thương x 2 + 4x + 3 và đa thức dư -12.
d) Đa thức x + 5 và đa thức dư x – 4.
Phần trắc nghiệm (2 điểm)
Kết quả của phép tính: ( 2 x 2 – 32 ) : ( x – 4 ) là:
A. 2(x – 4)
B. 2(x + 4)
C. x + 4
D. x – 4
Thực hiện phép tính:
a)2x(3x2 - 5x + 3) b)-2x2(x2 + 5x - 3) c)-1/2x2(2x3 - 4x + 3)
d) (2x - 1)(x2 +5- 4) c) 7x(x - 4) - (7x + 3)(2x2 - x + 4).
a: \(=6x^3-10x^2+6x\)
b: \(=-2x^4-10x^3+6x^2\)
c: \(=-x^5+2x^3-\dfrac{3}{2}x^2\)
d: \(=2x^3+10x^2-8x-x^2-5x+4=2x^3+9x^2-13x+4\)
Thực hiện phép tính: a) 4n²/17n⁴ × ( - 7m² / 12n ) b) 3x - 1 / 10x² + 2x × 25x² +10x +1/ 1 - 9x² c) 27 - a³ / 5a + 10 ÷ a - 3 / 3a + 6 d) x² - 1 / x² + 2x - 15 ÷ x² +5x +4 / x² -10x +21
a) \(\dfrac{4n^2}{17n^4}\cdot\dfrac{-7n^2}{12n}\) \(\left(n\ne0\right)\)
\(=\dfrac{4n^2\cdot-7n^2}{17n^4\cdot12n}\)
\(=\dfrac{-28n^4}{204n^5}\)
\(=\dfrac{-7}{51n}\)
b) \(\dfrac{3x-1}{10x^2+2x}\cdot\dfrac{25x^2+10x+1}{1-9x^2}\) \(\left(x\ne\pm\dfrac{1}{3};x\ne0;x\ne-\dfrac{1}{5}\right)\)
\(=\dfrac{3x-1}{2x\left(5x+1\right)}\cdot\dfrac{\left(5x+1\right)^2}{\left(1-3x\right)\left(3x+1\right)}\)
\(=\dfrac{-\left(1-3x\right)\left(5x+1\right)^2}{2x\left(5x+1\right)\left(1-3x\right)\left(1+3x\right)}\)
\(=\dfrac{-\left(5x+1\right)}{2x\left(1+3x\right)}\)
\(=-\dfrac{5x+1}{6x^2+2x}\)
c) \(\dfrac{27-a^3}{5a+10}:\dfrac{a-3}{3a+6}\) \(\left(a\ne-2;a\ne3\right)\)
\(=\dfrac{\left(3-a\right)\left(9+3a+a^2\right)}{5\left(a+2\right)}\cdot\dfrac{3\left(a+2\right)}{a-3}\)
\(=\dfrac{-\left(a-3\right)\left(a^2+3a+9\right)\cdot3\left(a+2\right)}{5\left(a+2\right)\left(a-3\right)}\)
\(=\dfrac{-3\left(a^2+3x+9\right)}{5}\)
\(=-\dfrac{3x^2+9x+27}{5}\)
d) \(\dfrac{x^2-1}{x^2+2x-15}:\dfrac{x^2+5x+4}{x^2-10x+21}\) \(\left(x\ne3;x\ne-5;x\ne-1;x\ne-4\right)\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x+5\right)}:\dfrac{\left(x+1\right)\left(x+4\right)}{\left(x-3\right)\left(x-7\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-1\right)}{\left(x-3\right)\left(x+5\right)}\cdot\dfrac{\left(x-3\right)\left(x-7\right)}{\left(x+1\right)\left(x+4\right)}\)
\(=\dfrac{\left(x+1\right)\left(x-7\right)}{\left(x+5\right)\left(x+4\right)}\)