\(\dfrac{6^2+3\cdot6^2+3^2}{-13}\)
\(\dfrac{6^3+3\cdot6^2+3^3}{-13}\)
\(\dfrac{6^3+3.6^2+3^3}{-13}\)=\(\dfrac{3^3.2^3+3.2^2.3^2+3^3}{-13}\)=\(\dfrac{3^3\left(2^3+2^2+1\right)}{-13}\)
=\(\dfrac{3^3.13}{-13}\)=\(-3^3\)=\(-27\)
\(B=\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+\dfrac{2}{3\cdot4\cdot5}+\dfrac{2}{4\cdot5\cdot6}+\dfrac{2}{5\cdot6\cdot7}+\dfrac{2}{6\cdot7\cdot8}\)
\(B=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{3.4.5}+\dfrac{2}{4.5.6}+\dfrac{2}{5.6.7}+\dfrac{2}{6.7.8}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{6.7}-\dfrac{1}{7.8}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{7.8}\)
\(=\dfrac{1}{2}-\dfrac{1}{56}=\dfrac{27}{56}\)
tính :
\(\dfrac{5^2\cdot6^{11}\cdot16^2+6^2\cdot12^6\cdot15^2}{2\cdot6^{12}\cdot10^4-81^2\cdot960^3}\)
\(\frac{6^3+3\cdot6^2+3^3}{-13}\)
\(\frac{6^3+3.6^2+3}{-13}\)
\(=\frac{216+108+27}{-13}\)
\(=\frac{351}{-13}\)
\(=-27\)
\(\frac{6^3+3\cdot6^2+3^3}{-13}=\frac{216+108+27}{-13}\)
\(=\frac{351}{-13}=\frac{27\cdot13}{-13}=-27\)
\(\frac{6^3+3\cdot6^2\cdot3^3}{-13}\)
\(\frac{6^3+3.6^2.3^3}{-13}\)
\(=\frac{3^3.2^3+3.3^2.2^2.3^3}{-13}\)
\(=\frac{3^3.2^2.\left(2+3^3\right)}{-13}\)
\(=\frac{3^3.2^2.54}{-13}\)
\(=>....\)
\(\frac{6^3+3\cdot6^2\cdot3^3}{-13}\)
\(=\frac{216+3\cdot36\cdot27}{-13}\)
\(=\frac{216+2916}{-13}\)
\(=\frac{3132}{-13}\)
1)A=\(\dfrac{5}{1\cdot2}+\dfrac{5}{2\cdot3}+.....+\dfrac{5}{99\cdot100}\)
C=\(1\cdot2\cdot3+2\cdot3\cdot4++3\cdot4\cdot5+4\cdot5\cdot6+5\cdot6\cdot7+6\cdot7\cdot8+7\cdot8\cdot9+8\cdot9\cdot10\)
D=\(1^2+2^2+3^2+...+99^2+100^2\)
a, A= \(5\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)
\(A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=5\left(1-\dfrac{1}{100}\right)\)
\(A=5.\dfrac{99}{100}=\dfrac{99}{20}.\)
b, \(C=1.2.3+2.3.4+...+8.9.10\)
\(4C=1.2.3.4+2.3.4.\left(5-1\right)+...+8.9.10.\left(11-7\right)\)\(4C=1.2.3.4+2.3.4.5-1.2.3.4+...+8.9.10.11-7.8.9.10\)\(4C=8.9.10.11\)
\(C=\dfrac{8.9.10.11}{4}=1980.\)
c, https://hoc24.vn/hoi-dap/question/384591.html
Câu này bạn vào đây mình đã giải câu tương tự nhé.
\(1)A=\dfrac{5}{1.2}+\dfrac{5}{2.3}+...+\dfrac{5}{99.100}\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=5\left(1-\dfrac{1}{100}\right)\)
\(\Leftrightarrow A=5\cdot\dfrac{99}{100}\)
\(\Leftrightarrow A=\dfrac{99}{20}\)
có ai giúp mình với \(\frac{6^3+3\cdot6^2+3^2}{-13}\)
\(\frac{6^3+3.6^2+3^2}{-13}\)
\(=\frac{\left(2.3\right)^3+3.\left(2.3\right)^2+3^2}{-13}\)
\(=\frac{2^3.3^3+\left(3.3^2\right).2+3^2}{-13}\)
\(=\frac{3^2.\left(2^3.3+3.2+1\right)}{-13}\)
\(=\frac{3^2.31}{-13}\)
\(=\frac{9.31}{-13}\)
\(=\frac{273}{-13}\)
\(=-21\)
\(\frac{6^3+3\cdot6^2+3^3}{-13}\)
đổi tik nha? ^-^
\(\frac{6^3+3\cdot6^2+3^3}{-13}\)
\(=\frac{6^2\cdot\left(6+3\right)+3^3}{-13}\)
\(=\frac{6^2\cdot3^2+3^3}{-13}\)
\(=\frac{3^3\cdot\left(6^2+3\right)}{-13}\)
\(=\frac{3^3\cdot39}{-13}\)
\(=-3^3=-27\)
Tính giá trị biểu thức :
1. \(A=\dfrac{\dfrac{2}{5}+\dfrac{2}{7}-\dfrac{2}{9}-\dfrac{2}{11}}{\dfrac{4}{5}+\dfrac{4}{7}-\dfrac{4}{9}-\dfrac{4}{11}}\)
2. \(B=\dfrac{1^2}{1\cdot2}\cdot\dfrac{2^2}{2\cdot3}\cdot\dfrac{3^2}{3\cdot4}\cdot\dfrac{4^2}{4\cdot5}\)
3. \(C=\dfrac{2^2}{1\cdot3}\cdot\dfrac{3^2}{2\cdot4}\cdot\dfrac{4^2}{3\cdot5}\cdot\dfrac{5^2}{4\cdot6}\cdot\dfrac{5^2}{4\cdot6}\)
4. \(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right)\cdot\left(\dfrac{2}{3}\cdot\dfrac{1}{4}\right)^2\)
5. Cho \(M=8\dfrac{2}{7}-\left(3\dfrac{4}{9}+4\dfrac{2}{7}\right)\) ; \(N=\left(10\dfrac{2}{9}+2\dfrac{3}{5}\right)-6\dfrac{2}{9}\). Tính \(P=M-N\)
6. \(E=10101\left(\dfrac{5}{111111}+\dfrac{5}{222222}-\dfrac{4}{3\cdot7\cdot11\cdot13\cdot37}\right)\)
7. \(F=\dfrac{\dfrac{1}{3}+\dfrac{1}{7}-\dfrac{1}{13}}{\dfrac{2}{3}+\dfrac{2}{7}-\dfrac{2}{13}}\cdot\dfrac{\dfrac{3}{4}-\dfrac{3}{16}-\dfrac{3}{256}+\dfrac{3}{64}}{1-\dfrac{1}{4}+\dfrac{1}{16}-\dfrac{1}{64}}+\dfrac{5}{8}\)
8. \(G=\text{[}\dfrac{\left(6-4\dfrac{1}{2}\right):0,03}{\left(3\dfrac{1}{20}-2,65\right)\cdot4+\dfrac{2}{5}}-\dfrac{\left(0,3-\dfrac{3}{20}\right)\cdot1\dfrac{1}{2}}{\left(1,88+2\dfrac{3}{25}\right)\cdot\dfrac{1}{80}}\text{]}:\dfrac{49}{60}\)
9. \(H=\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+\dfrac{1}{4\cdot5\cdot6}+...+\dfrac{1}{98\cdot99\cdot100}\)
10. \(I=\dfrac{8}{9}\cdot\dfrac{15}{16}\cdot\dfrac{24}{25}\cdot...\cdot\dfrac{2499}{2500}\)
11. \(K=\left(-1\dfrac{1}{2}\right)\left(-1\dfrac{1}{3}\right)\left(-1\dfrac{1}{4}\right)...\left(-1\dfrac{1}{999}\right)\)
12. \(L=1\dfrac{1}{3}+1\dfrac{1}{8}+1\dfrac{1}{15}...\) (98 thừa số)
13. \(M=-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{-2+\dfrac{1}{3}}}}\)
14. \(N=\dfrac{155-\dfrac{10}{7}-\dfrac{5}{11}+\dfrac{5}{23}}{403-\dfrac{26}{7}-\dfrac{13}{11}+\dfrac{13}{23}}\)
15. \(P=\left(\dfrac{1}{4}-1\right)\left(\dfrac{1}{5}-1\right)...\left(\dfrac{1}{2001}-1\right)\)
16. \(Q=\left(\dfrac{1}{1\cdot2}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+...+\dfrac{1}{2005\cdot2006}\right):\left(\dfrac{1}{1004\cdot2006}+\dfrac{1}{1005\cdot2005}+...+\dfrac{1}{2006\cdot1004}\right)\)
1. \(A=\dfrac{2\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}{4\left(\dfrac{1}{5}+\dfrac{1}{7}-\dfrac{1}{9}-\dfrac{1}{11}\right)}=\dfrac{2}{4}=\dfrac{1}{2}\)
2. \(B=\dfrac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\dfrac{1}{5}\)
3.\(C=\dfrac{2^2.3^2.\text{4^2.5^2}.5^2}{1.2^2.3^2.4^2.5.6^2}=\dfrac{125}{36}\)
4.D=\(D=\left(\dfrac{4}{5}-\dfrac{1}{6}\right).\dfrac{4}{9}.\dfrac{1}{16}=\dfrac{19}{30}.\dfrac{1}{36}=\dfrac{19}{1080}\)