Tìm nghiệm của đa thức:
B= \(2x^4-8x^2\)
Để B có nghiệm
=> B = 0
=> 2x4 - 8x2 = 0
=> 2x2(x2 - 4) = 0
=> \(\orbr{\begin{cases}2x^2=0\\x^2-4=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=0\\x=\pm2\end{cases}}\)
Vậy x \(\in\left\{0;2;-2\right\}\)là nghiệm của đa thức B
cho 2 đa thức
A(X) = 5X^4-5 + 6X^3 +X^4 -5X^-12
B(X) = 8X^4 +2X^3 -2X^4+4X^3 -5X -15 -2X^2
a) thu gon A (X) , B(X) VÀ sắp xếp các đa thức theo thứ tự giảm dần
b) tìm nghiệm của đa thức C(x) , biết C(X) = A(X)-B(X)
a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12
= (5x4 + x4) + (- 5 - 12) + 6x3 - 5x
= 6x4 - 17 + 6x3 - 5x
= 6x4 + 6x3 - 5x - 17
B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2
= (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2
= 4x4 + 6x3 - 5x - 15 - 2x2
= 4x4 + 6x3 - 2x2 - 5x - 15
b) C(x) = A(x) - B(x)
= 6x4 + 6x3 - 5x - 17 - (4x4 + 6x3 - 2x2 - 5x - 15)
= 6x4 + 6x3 - 5x - 17 - 4x4 - 6x3 + 2x2 + 5x + 15
= ( 6x4 - 4x4) + ( 6x3 - 6x3) + (- 5x + 5x) + (-17 + 15) + 2x2
= 2x4 - 2 + 2x2
= 2x4 + 2x2 - 2
Cho đa thức :f(x)=x^4-2x^2+4x+8x^3 và G(x) =6+8x^3-3x^2+4x
a, Tính F(-1)
b,Tính H(x) = F(x) - G(x)
c, Đa thức H(x) có nhiều nhất bao nhiêu nghiệm . Tìm nghiệm của đa thức H(x)
a) f(-1)=(-1)4-2(-1)2+4(-1)+8(-1)3
=1-2+(-4)+(-8)
=-9
b)H(x)=(x4-2x2+4x+8x3)-(6+8x3-3x2+4x)
=x4-2x2+4x+8x3-6-8x3+3x2+4x
=x4+x2+8x-6
t là nốt câu c):
Đa thức H(x) có bậc là 4 nên có nhiều nhất 4 nghiệm.
Làm lại câu b) của bạn kia tí nhé:
b)\(H\left(x\right)=f\left(x\right)-g\left(x\right)=x^4+x^2-6\)
c) Đa thức trên có bậc 4 nên có nhiều nhất 4 nghiệm.
\(H\left(x\right)=x^4+3x^2-2x^2-6\)
\(=\left(x^2-2\right)\left(x^2+3\right)=0\)
Suy ra \(\orbr{\begin{cases}x^2-2=0\\x^2+3=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x^2=2\\x^2=-3\left(L\right)\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\x=-\sqrt{2}\end{cases}}\)
Tìm nghiệm của đa thức sau :
a) -3x^3+5x^2-2x
b) -1/2x^4+1/8x^2
a) \(-3x^3+5x^2-2x=0\\ \Leftrightarrow3x^3-5x^2+2x=0\\ \Leftrightarrow x\left(3x^2-5x+2\right)=0\\ \Leftrightarrow x\left(3x-2\right)\left(x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\\x=1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;\dfrac{2}{3};1\right\}\)
b) \(\dfrac{-1}{2}x^4+\dfrac{1}{8}x^2=0\\ \Leftrightarrow\dfrac{-1}{2}x^2\left(x^2-\dfrac{1}{4}\right)=0\\ \Leftrightarrow\dfrac{-1}{2}x^2\left(x-\dfrac{1}{2}\right)\left(x+\dfrac{1}{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{0;\dfrac{1}{2};\dfrac{-1}{2}\right\}\)
Tìm nghiệm của đa thức
2x^3 + x^2 - 8x -4
x^2(2x+1)-4(2x+1)
=(x^2-4)(2x+1)
R bn cho 2 cái đấy =0 từ đó tính đc mỗi cái
X có 2 gtri nha
Tự lm nốt
Ta có :
\(2x^3+x^2-8x-4=0\)
\(\Leftrightarrow\left(2x^3+4x^2\right)-\left(3x^2+6x\right)-\left(2x+4\right)=0\)
\(\Leftrightarrow2x^2\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(2x^2-3x-2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left[\left(2x^2+x\right)-\left(4x+2\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left[x\left(2x+1\right)-2\left(2x+1\right)\right]=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)\left(2x+1\right)=0\)
Ta có các trường hợp :
* \(x+2=0\Leftrightarrow x=-2\)
* \(x-2=0\Leftrightarrow x=2\)
* \(2x+1=0\Leftrightarrow x=-\frac{1}{2}\)
Vậy .....
cho f(x)= ax^2+b+c. Chứng tỏ rằng nếu a+b+c=0 thì x=1 là 1 nghiệm của đa thức đó. Nếu a-b+c=0 thì x=-1 là 1 nghiệm của đa thức đó.
Áp dụng để tìm 1 nghiệm của đa thức sau:
A= 8x^2-6x-2
B= -2x^2-5-7
C= 8x^2+11x+3
D= -3x^2-7x-4
Tìm nghiệm của các đa thức
1: 2x-6
2: 2x^2-8x
+) \(2x-6=0\)
\(\Rightarrow x=3\)
+) \(2x^2-8x=0\)
\(2x\left(x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
1) Đặt \(A\left(x\right)=2x-6\)
Cho \(A\left(x\right)=0\)
hay \(2x-6=0\)
\(2x\) \(=0+6\)
\(2x\) \(=6\)
\(x\) \(=6:2\)
\(x\) \(=3\)
Vậy \(x=3\) là nghiệm của đa thức A (\(x\))
2) Đặt \(B\left(x\right)=2x^2-8x\)
Cho \(B\left(x\right)=0\)
hay \(2x^2-8x=0\)
\(2.x.x-8.x=0\)
\(x.\left(2x-8\right)=0\)
⇒ \(x=0\) hoặc \(2x-8=0\)
⇒ \(x=0\) hoặc \(2x\) \(=0+8\)
⇒ \(x=0\) hoặc \(2x\) \(=8\)
⇒ \(x=0\) hoặc \(x\) \(=8:2=4\)
Vậy \(x=0\) hoặc \(x=4\) là nghiệm của đa thức B (\(x\))
tìm nghiệm của đa thức
a) x^2 + 2x +3
b) x^2 - 3x
c) 2x - 8x^3
d) 2/3- 6x^2
a) Sữa đề: \(x^2+2x-3=0\)
\(\Rightarrow x^2-x+3x-3=0\)
\(\Rightarrow x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
b) \(x^2-3x=0\)
\(\Rightarrow x\left(x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)
c) \(2x-8x^3=0\)
\(\Rightarrow2x\left(1-4x^2\right)=0\)
\(\Rightarrow2x\left(1-2x\right)\left(1+2x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\1-2x=0\\1+2x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{1}{2}\\x=-\dfrac{1}{2}\end{matrix}\right.\)
d) \(\dfrac{2}{3}-6x^2=0\)
\(\Rightarrow\dfrac{2}{3}\left(1-9x^2\right)=0\)
\(\Rightarrow\dfrac{2}{3}\left(1-3x\right)\left(1+3x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}1-3x=0\\1+3x=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
a) Để tìm nghiệm của đa thức x^2 + 2x + 3, ta giải phương trình x^2 + 2x + 3 = 0. Áp dụng công thức nghiệm của phương trình bậc hai, ta có: x = (-2 ± √(2^2 - 4*1*3))/(2*1) x = (-2 ± √(4 - 12))/2 x = (-2 ± √(-8))/2 x = (-2 ± 2√2i)/2 x = -1 ± √2i Vậy đa thức x^2 + 2x + 3 không có nghiệm thực. b) Để tìm nghiệm của đa thức x^2 - 3x, ta giải phương trình x^2 - 3x = 0. Áp dụng công thức nghiệm của phương trình bậc hai, ta có: x = (3 ± √(3^2 - 4*1*0))/(2*1) x = (3 ± √(9))/2 x = (3 ± 3)/2 Vậy đa thức x^2 - 3x có hai nghiệm: x = 0 và x = 3. c) Để tìm nghiệm của đa thức 2x - 8x^3, ta giải phương trình 2x - 8x^3 = 0. Ta có thể rút gọn phương trình bằng cách chia cả hai vế cho 2, ta được: x - 4x^3 = 0 Vậy đa thức 2x - 8x^3 có một nghiệm duy nhất: x = 0. d) Để tìm nghiệm của đa thức 2/3 - 6x^2, ta giải phương trình 2/3 - 6x^2 = 0. Ta có thể đưa phương trình về dạng 6x^2 = 2/3 bằng cách nhân cả hai vế cho 3, ta được: 6x^2 = 2/3 Tiếp theo, ta chia cả hai vế cho 6, ta được: x^2 = 1/9 Áp dụng căn bậc hai cho cả hai vế, ta có: x = ± √(1/9) x = ± 1/3 Vậy đa thức 2/3 - 6x^2 có hai nghiệm: x = 1/3 và x = -1/3.
a) \(x^2+2x+3=0\Rightarrow x^2+2x+1+2=0\Rightarrow\left(x+1\right)^2+2=0\left(1\right)\)
mà \(\left(x+1\right)^2\ge0\)
\(\left(1\right)\Rightarrow\) Đa thức có vô số nghiệm
b) \(x^2-3x=0\Rightarrow x\left(x-3\right)=0\Rightarrow x=0;x=3\)
\(\Rightarrow x\in\left\{0;3\right\}\)
c) \(2x-8x^3=0\Rightarrow2x\left(1-4x^2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}2x=0\\1-4x^2=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^2=\dfrac{1}{4}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\pm\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow x\in\left\{0;\pm\dfrac{1}{2}\right\}\)
d) \(\dfrac{2}{3}-6x^2=0\Rightarrow6x^2=\dfrac{2}{3}\Rightarrow x^2=\dfrac{1}{9}\Rightarrow x=\pm\dfrac{1}{3}\)
\(\Rightarrow x\in\left\{\pm\dfrac{1}{3}\right\}\)
Tìm nghiệm của các đa thức
A(x)= 5x^4 + 8x^2 +2x^4 - 3x - 7 - x^4
B(x)= x^5 + 3x^3 + x