Tìm GTNN của biểu thức: B = x^2 - 2y - 4xy + 5y^2 + 2022
Tìm GTLN của biểu thức:
-2x^2 - y^2 - 2xy + 4x + 2y + 2
Tìm GTNN của biểu thức:
x^2 - 4xy + 5y^2 + 10x - 22y + 27
Đặt \(A=-2x^2-y^2-2xy+4x+2y+2\)
\(-A=2x^2+y^2+2xy-3x-2y-2\)
\(-A=\left(x^2+2xy+y^2\right)+x^2-4x-2y-2\)
\(-A=\left[\left(x+y\right)^2-2\left(x+y\right)+1\right]+\left(x^2-2x+1\right)-4\)
\(-A=\left(x+y-1\right)^2+\left(x-1\right)^2-4\)
Mà \(\left(x+y-1\right)^2\ge0\forall x;y\)
\(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge-4\)
\(\Leftrightarrow A\le4\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x+y-1=0\\x-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}y=0\\x=1\end{cases}}\)
Vậy \(A_{Max}=4\Leftrightarrow\left(x;y\right)=\left(1;0\right)\)
Đặt \(B=x^2-4xy+5y^2+10x-22y+27\)
\(B=\left(x^2-4xy+4y^2\right)+y^2+10x-22y+27\)
\(B=\left[\left(x-2y\right)^2+2\left(x-2y\right)\times5+25\right]+\)\(\left(y^2-2y+1\right)+1\)
\(B=\left(x-2y+5\right)^2+\left(y-1\right)^2+1\)
Mà \(\left(x-2y+5\right)^2\ge0\forall x;y\)
\(\left(y-1\right)^2\ge0\forall y\)
\(\Rightarrow B\ge1\)
Dấu "=" xảy ra khi :
\(\hept{\begin{cases}x-2y+5=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-3\\y=1\end{cases}}\)
Vậy \(B_{Min}=1\Leftrightarrow\left(x;y\right)=\left(-3;1\right)\)
Tìm GTNN của biểu thức sau x^2-4xy-3y-1/2 5y^2
Tìm GTNN của: B= -x^2+4xy-2x-5y^2+2y-4
tìm GTNN của biểu thức x^2+5y^2+9z^2-4xy-6yz+12
\(x^2+5y^2+9z^2-4xy-6yz+12\)
\(=\left(x^2-4xy+4y^2\right)+\left(y^2-6yz+9z^2\right)+12\)
\(=\left(x-2y\right)^2+\left(y-3z\right)^2+12\ge12\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x-2y=0\\y-3z=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2y\\y=3z\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=6z\\y=3z\end{cases}}\)
tìm giá trị nhỏ nhất của biểu thức x^2-4xy+5y^2-2y+28
đặt biểu thức là A. Ta có:
A=x2 - 4xy + 5y2 - 2y + 28
= (x2-4xy+4y2) + (y2-2y +1)+27
=(x-2y)2 + (y-1)2 + 27
vì (x-2y)2 ≥ 0; (y-1)2 ≥ 0 ⇔ A ≥ 27
⇔\(\left[\begin{array}{} (x-2y)^2=0\\ (y-1)^2 =0 \end{array} \right.\) ⇔\(\left[\begin{array}{} x=2\\ y=1\end{array} \right.\)
Vậy, Min A=27 khi x=2; y=1
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
Tìm GTNN của biểu thức: \(B=x^2+5y^2-4xy-5y+6\)
\(B=x^2+5y^2-4xy-5y+6=x^2-4xy+4y^2+y^2-2.\dfrac{5}{2}y+\dfrac{25}{4}-\dfrac{1}{4}\)\(=\left(x-2y\right)^2+\left(y-\dfrac{5}{2}\right)^2-\dfrac{1}{4}\)
Do \(\left(x-2y\right)^2\)\(\ge0\left(\forall x;y\right)\)
\(\left(y-\dfrac{5}{2}\right)^2\ge0\left(\forall y\right)\)
\(\Rightarrow\left(x-2y\right)^2+\left(y-\dfrac{5}{2}\right)^2\ge0\left(\forall x;y\right)\)
\(\Rightarrow\)\(\left(x-2y\right)^2+\left(y-\dfrac{5}{2}\right)^2-\dfrac{1}{4}\ge\dfrac{-1}{4}\left(\forall x;y\right)\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}(x-2y)^2=0\\\left(y-\dfrac{5}{2}\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=\dfrac{5}{2}\end{matrix}\right.\)
Vậy \(MinB=\dfrac{-1}{4}\Leftrightarrow\left\{{}\begin{matrix}x=5\\y=\dfrac{5}{2}\end{matrix}\right.\)
Tìm GTNN của biểu thức A=x2+5y2+2x-4xy-10y+6
Tìm GTNN của biểu thức sau:
\(E=2x^2+5y^2+4xy-4x+2y+8\)
\(E=2x^2+5y^2+4xy-4x+2y+8\)
\(=\left(x^2+4xy+4y^2\right)+\left(x^2-4x+4\right)+\left(y^2+2y+1\right)+3\)
\(=\left(x+2y\right)^2+\left(x-2\right)^2+\left(y+1\right)^2+3\ge3\)
Vậy GTNN của E là 3 khi \(x=2\) và \(y=-1\)
Tìm GTLN hoặc GTNN của các biểu thức sau:
A=1-4x+x^2
B=-2x^2+2x
C=2x^2+y^2+2x+2y
D= x^2 - 4xy + 5y^2 -y
A = x2 - 4x + 1 = (x2 - 2.x.2 + 4) - 3 = (x - 2)2 - 3 \(\ge\) -3
Vậy: GTNN của A là -3 (tại x = 2)
B = -2x2 + 2x = -2(x2 - x) = -2\(\left(x^2-2.x.\frac{1}{2}+\frac{1}{4}-\frac{1}{4}\right)\)
= -2\(\left(x-\frac{1}{2}\right)^2+\frac{1}{2}\) \(\le\frac{1}{2}\)
Vậy: GTLN của B là \(\frac{1}{2}\) tại x = \(\frac{1}{2}\)
C = x2 + y2 + 2x + 2y = (x2 + 2x + 1) + (y2 + 2y + 1) - 2
= (x + 1)2 + (y + 1)2 - 2 \(\ge\) -2
Vậy: GTNN của C là -2 tại x = -1 ; y = -1
D = x2 - 4xy + 5y2 - y = (x2 - 4xy + 4y2) + (y2 - y + \(\frac{1}{4}\)) - \(\frac{1}{4}\)
= (x - 2y)2 + (y - \(\frac{1}{2}\))2 - \(\frac{1}{2}\ge-\frac{1}{2}\)
Vậy: GTNN của D là \(\frac{-1}{4}\) tại x = 1 ; y = \(\frac{1}{2}\)