Cho a,b,c \(\in\) [-2,5] thỏa mãn a+2b+3c \(\le\) 2.Chứng minh \(a^2\)+2\(b^2\)+3\(c^2\)\(\le\)66
Cho a,b,c \(\in\)[-2,5] thỏa mãn a+2b+3c\(\le\)2.Chứng minh \(a^2+2b^2+3c\)\(\le\)66
Cho số a, b, c thuộc [-2;5] thỏa mãn a+2b+3c ≤ 2. Chứng minh a2+2b2+3c2 ≤ 66
Lời giải:
Vì \(a,b,c\in [-2;5]\) nên:
\(\left\{\begin{matrix} (a+2)(a-5)\leq 0\\ (b+2)(b-5)\leq 0\\ (c+2)(c-5)\leq 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} a^2\leq 3a+10\\ b^2\leq 3b+10\\ c^2\leq 3c+10\end{matrix}\right.\)
\(\Leftrightarrow \left\{\begin{matrix} a^2\leq 3a+10\\ 2b^2\leq 6b+20\\ 3c^2\leq 9c+30\end{matrix}\right. \)
Do đó:
\(a^2+2b^2+3c^2\leq 3(a+2b+3c)+60\)
Mà \(a+2b+3c\leq 2\)
\(\Rightarrow a^2+2b^2+3c^2\leq 3.2+60=66\)
Ta có đpcm
Dấu bằng xảy ra khi \((a,b,c)=(-2,5,-2)\)
Cho số a, b, c thuộc [-2;5] thỏa mãn a+2b+3c ≤ 2. Chứng minh a2+2b2+3c2 ≤ 66
Vì \(-2\le a;b;c\le5\Rightarrow\hept{\begin{cases}\left(a+2\right)\left(a-5\right)\le0\\2\left(b+2\right)\left(b-5\right)\le0\\3\left(c+2\right)\left(c-5\right)\le0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a^2-3a-10\le0\\2b^2-6b-20\le0\\3c^2-9b-30\le0\end{cases}}\)
\(\Rightarrow a^2+2b^2+3c^2-3\left(a+2b+3c\right)-60\le0\)
\(\Rightarrow a^2+2b^2+3c^2\le3\left(a+2b+3c\right)+60\le3.2+60=66\) (ĐPCM)
Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}a=-2\\a=5\end{cases};\orbr{\begin{cases}b=-2\\b=5\end{cases};\orbr{\begin{cases}c=-2\\c=5\end{cases}}}}\)
+) Cho các số dương a,b,c thỏa mãn: a+2b+3c=3
CM: \(\sqrt{\dfrac{2ab}{2ab+9c}}+\sqrt{\dfrac{2bc}{2bc+a}}+\sqrt{\dfrac{ac}{ac+2b}}\le\dfrac{3}{2}\)
+) Cho a,b,c >0 và a+b+c≤3
Tìm min P\(=\dfrac{1}{a^2+b^2}+\dfrac{1}{b^2+c^2}+\dfrac{1}{c^2+a^2}\)
cho a,b,c >0, thỏa mãn abc=1. Chứng minh rằng \(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
Cho ba số dương a,b và c thỏa mãn abc = 1 . Chứng minh rằng :
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\)
Bài này chả khó với lại đầy người đăng rồi
Ta có: \(a^2+b^2\ge2ab\) và \(b^2+1\ge2b\)
\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2=2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2ab+2b+2}=\frac{1}{2\left(ab+b+1\right)}\left(1\right)\)
Tương tự ta có: \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\left(2\right);\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\left(3\right)\)
Cộng theo vế của \(\left(1\right);\left(2\right);\left(3\right)\) ta có:
\(VT\le\frac{1}{2\left(ab+b+1\right)}+\frac{1}{2\left(bc+c+1\right)}+\frac{1}{2\left(ac+a+1\right)}\)
\(=\frac{1}{2}\left(\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}\right)\left(abc=1\right)\)
\(=\frac{1}{2}\left(\frac{ac+a+1}{ac+a+1}\right)=\frac{1}{2}=VP\) (ĐPCM)
Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)
Đẳng thức xảy ra khi a = b = c = 1/3
Bài này không khó! Sao lại được vào câu hỏi hay?
cho ba số dương a,b và c thỏa mãn abc = 1 . Chứng minh rằng:
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\le\frac{1}{2}.\)
Ta có: \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)\(;b^2+1\ge2\sqrt{b^2\cdot1}=2b\)
\(\Rightarrow a^2+2b^2+3\ge2ab+2b+2=2\left(ab+b+1\right)\)
\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2}\left(ab+b+1\right)\left(1\right)\). Tương tự ta có:
\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}\left(bc+c+1\right)\left(2\right);\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\left(ac+a+1\right)\left(3\right)\)
Cộng theo vế của (1);(2) và (3) ta có:
\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)
\(\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)
\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab+b+1}+\frac{b}{ab+b+1}\right)=\frac{1}{2}\) (vì abc=1)
Suy ra Đpcm. Dấu "=" khi a=b=c=1
Cho các số thực dương \(a;b;c\) thỏa mãn : \(a+b+c=3\). Chứng minh rằng :
\(\dfrac{ab}{a+3b+2c}+\dfrac{bc}{b+3c+2a}+\dfrac{ac}{c+3a+2b}\le\dfrac{1}{2}\)
P/s: Em xin phép nhờ quý thầy cô giáo và các bạn yêu toán giúp đỡ em tham khảo với ạ!
Em cám ơn nhiều ạ!
\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{ab}{2b}\right)\)
\(=\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)
Tương tự:
\(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}+\dfrac{b}{2}\right)\)
\(\dfrac{ac}{c+3a+2b}\le\dfrac{1}{9}\left(\dfrac{ac}{b+c}+\dfrac{ac}{a+b}+\dfrac{c}{2}\right)\)
Cộng vế:
\(P\le\dfrac{1}{9}\left(\dfrac{bc+ac}{a+b}+\dfrac{bc+ab}{a+c}+\dfrac{ab+ac}{b+c}+\dfrac{a+b+c}{2}\right)\)
\(P\le\dfrac{1}{9}.\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{2}\)
Dấu "=" xảy ra khi \(a=b=c=1\)
cho a,b,c là các số thực ko âm thỏa mãn a^2+b^2+c^2=3. Chứng minh rằng \(\frac{a}{a^2+2b+3}+\frac{b}{b^2+2c+3}+\frac{c}{c^2+2a+3}\le\frac{1}{2}\)\(\frac{1}{2}\)
Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath
Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath