Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
N.T.M.D
Xem chi tiết
Dương Thị Trà My
Xem chi tiết
Akai Haruma
23 tháng 5 2018 lúc 18:51

Lời giải:

\(a,b,c\in [-2;5]\) nên:

\(\left\{\begin{matrix} (a+2)(a-5)\leq 0\\ (b+2)(b-5)\leq 0\\ (c+2)(c-5)\leq 0\end{matrix}\right.\) \(\Leftrightarrow \left\{\begin{matrix} a^2\leq 3a+10\\ b^2\leq 3b+10\\ c^2\leq 3c+10\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a^2\leq 3a+10\\ 2b^2\leq 6b+20\\ 3c^2\leq 9c+30\end{matrix}\right. \)

Do đó:

\(a^2+2b^2+3c^2\leq 3(a+2b+3c)+60\)

\(a+2b+3c\leq 2\)

\(\Rightarrow a^2+2b^2+3c^2\leq 3.2+60=66\)

Ta có đpcm

Dấu bằng xảy ra khi \((a,b,c)=(-2,5,-2)\)

Trịnh Ánh My
Xem chi tiết
Đinh Đức Hùng
23 tháng 5 2018 lúc 7:15

Vì \(-2\le a;b;c\le5\Rightarrow\hept{\begin{cases}\left(a+2\right)\left(a-5\right)\le0\\2\left(b+2\right)\left(b-5\right)\le0\\3\left(c+2\right)\left(c-5\right)\le0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a^2-3a-10\le0\\2b^2-6b-20\le0\\3c^2-9b-30\le0\end{cases}}\)

\(\Rightarrow a^2+2b^2+3c^2-3\left(a+2b+3c\right)-60\le0\)

\(\Rightarrow a^2+2b^2+3c^2\le3\left(a+2b+3c\right)+60\le3.2+60=66\) (ĐPCM)

Dấu "=" xảy ra \(\Leftrightarrow\orbr{\begin{cases}a=-2\\a=5\end{cases};\orbr{\begin{cases}b=-2\\b=5\end{cases};\orbr{\begin{cases}c=-2\\c=5\end{cases}}}}\)

Hi Mn
Xem chi tiết
Lương Lê
Xem chi tiết
Yim Yim
Xem chi tiết
Thắng Nguyễn
21 tháng 3 2017 lúc 19:12

Bài này chả khó với lại đầy người đăng rồi

Ta có: \(a^2+b^2\ge2ab\) và \(b^2+1\ge2b\)

\(\Rightarrow a^2+b^2+b^2+1+2\ge2ab+2b+2=2\left(ab+b+1\right)\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2ab+2b+2}=\frac{1}{2\left(ab+b+1\right)}\left(1\right)\)

Tương tự ta có: \(\frac{1}{b^2+2c^2+3}\le\frac{1}{2\left(bc+c+1\right)}\left(2\right);\frac{1}{c^2+2a^2+3}\le\frac{1}{2\left(ac+a+1\right)}\left(3\right)\)

Cộng theo vế của \(\left(1\right);\left(2\right);\left(3\right)\) ta có:

\(VT\le\frac{1}{2\left(ab+b+1\right)}+\frac{1}{2\left(bc+c+1\right)}+\frac{1}{2\left(ac+a+1\right)}\)

\(=\frac{1}{2}\left(\frac{ac}{a^2bc+abc+ac}+\frac{a}{abc+ac+a}+\frac{1}{ac+a+1}\right)\)

\(=\frac{1}{2}\left(\frac{ac}{ac+a+1}+\frac{a}{ac+a+1}+\frac{1}{ac+a+1}\right)\left(abc=1\right)\)

\(=\frac{1}{2}\left(\frac{ac+a+1}{ac+a+1}\right)=\frac{1}{2}=VP\) (ĐPCM)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{3}\)

tth_new
21 tháng 3 2017 lúc 19:49

Đẳng thức xảy ra khi a = b = c = 1/3

Bài này không khó! Sao lại được vào câu hỏi hay?

tth_new
21 tháng 3 2017 lúc 20:50

tk cho mình nhìu nhìu nha! Gõ máy mệt quá!

Anh Minh Cù
Xem chi tiết
Thắng Nguyễn
5 tháng 12 2016 lúc 17:38

Ta có: \(a^2+b^2\ge2\sqrt{a^2b^2}=2ab\)\(;b^2+1\ge2\sqrt{b^2\cdot1}=2b\)

\(\Rightarrow a^2+2b^2+3\ge2ab+2b+2=2\left(ab+b+1\right)\)

\(\Rightarrow\frac{1}{a^2+2b^2+3}\le\frac{1}{2}\left(ab+b+1\right)\left(1\right)\). Tương tự ta có:

\(\frac{1}{b^2+2c^2+3}\le\frac{1}{2}\left(bc+c+1\right)\left(2\right);\frac{1}{c^2+2a^2+3}\le\frac{1}{2}\left(ac+a+1\right)\left(3\right)\)

Cộng theo vế của (1);(2) và (3) ta có:

\(\frac{1}{a^2+2b^2+3}+\frac{1}{b^2+2c^2+3}+\frac{1}{c^2+2a^2+3}\)

\(\le\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{1}{bc+c+1}+\frac{1}{ac+a+1}\right)\)

\(=\frac{1}{2}\left(\frac{1}{ab+b+1}+\frac{ab}{ab+b+1}+\frac{b}{ab+b+1}\right)=\frac{1}{2}\) (vì abc=1)

Suy ra Đpcm. Dấu "=" khi a=b=c=1

Phạm Kim Oanh
Xem chi tiết
Nguyễn Việt Lâm
6 tháng 4 2022 lúc 17:09

\(\dfrac{ab}{a+3b+2c}=\dfrac{ab}{\left(a+c\right)+\left(b+c\right)+2b}\le\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{ab}{2b}\right)\)

\(=\dfrac{1}{9}\left(\dfrac{ab}{a+c}+\dfrac{ab}{b+c}+\dfrac{a}{2}\right)\)

Tương tự:

\(\dfrac{bc}{b+3c+2a}\le\dfrac{1}{9}\left(\dfrac{bc}{a+b}+\dfrac{bc}{a+c}+\dfrac{b}{2}\right)\)

\(\dfrac{ac}{c+3a+2b}\le\dfrac{1}{9}\left(\dfrac{ac}{b+c}+\dfrac{ac}{a+b}+\dfrac{c}{2}\right)\)

Cộng vế:

\(P\le\dfrac{1}{9}\left(\dfrac{bc+ac}{a+b}+\dfrac{bc+ab}{a+c}+\dfrac{ab+ac}{b+c}+\dfrac{a+b+c}{2}\right)\)

\(P\le\dfrac{1}{9}.\left(a+b+c+\dfrac{a+b+c}{2}\right)=\dfrac{1}{2}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Siêu Nhân Lê
Xem chi tiết
Thắng Nguyễn
21 tháng 10 2016 lúc 16:52

Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath

OoO nhóc ngu ngơ OoO dễ...
14 tháng 9 2017 lúc 11:47

Câu hỏi của Tôi Là Ai - Toán lớp 8 - Học toán với OnlineMath

Nguyễn Hữu Ái Linh
14 tháng 9 2017 lúc 11:53

AHAHAHAHAHA!PIKAPIKAPIKA!