Tim x biet:
(3/4x + 5) - (2/3x - 4) - (1/6x + 1) = (1/3x + 4) - (1/3x - 3)
Tim x biet: (3/4x+5)-(2/3x-4)-(1/6x+1)=(1/3+4)-(1/3x-3)
\(\left(\dfrac{3x}{4}+5\right)-\left(\dfrac{2x}{3}-4\right)-\left(\dfrac{x}{6}+1\right)=\left(\dfrac{1}{3}+4\right)-\left(\dfrac{1}{3}x-3\right)\)
\(\Leftrightarrow\dfrac{3x}{4}-\dfrac{2x}{3}-\dfrac{x}{6}+5+4-1=\dfrac{13}{3}-\dfrac{1}{3}x+9\)
\(\Leftrightarrow\dfrac{9x-8x-2x}{12}+8=\dfrac{13-x}{3}+\dfrac{27}{3}\)
\(\Leftrightarrow\dfrac{-x}{12}+\dfrac{96}{12}=\dfrac{40-x}{3}\Leftrightarrow\dfrac{96-x}{12}=\dfrac{160-4x}{12}\)
\(\Rightarrow96-160=-4x+x\Leftrightarrow-64=-3x\Leftrightarrow x=\dfrac{64}{3}\)
Tìm x:
1) -3.(1-2x) - 4.(1+3x) = -5x + 5
2) 3.(2x - 5) - 6.(1 - 4x) = -3x + 7
3) (1 - 3x) - 2.(3x - 6) = -4x - 5
4) x.(4x - 3) - 2x.(2x - 1) = 5x - 7
5) 3x.(2x - 1) - 6x.(x + 2) = -3x + 4
6) (1 - 2x).3 - 4.(6x - 1) = 7x - 5
7) 6x - 3.(1 - 4x) - 5.(x + 1) = 2x + 7
8) 6.(1 - 3x) - 3.(2x + 5) = -10x + 7
9) 3x.(1 - 2x) + 6x^2 - 7x = 8.(1 - 2x) - 9
10) 2x.(1 + 3x) - 3x.(4 + 2x) = 3x - 4
* Trả lời:
\(\left(1\right)\) \(-3\left(1-2x\right)-4\left(1+3x\right)=-5x+5\)
\(\Leftrightarrow-3+6x-4-12x=-5x+5\)
\(\Leftrightarrow6x-12x+5x=3+4+5\)
\(\Leftrightarrow x=12\)
\(\left(2\right)\) \(3\left(2x-5\right)-6\left(1-4x\right)=-3x+7\)
\(\Leftrightarrow6x-15-6+24x=-3x+7\)
\(\Leftrightarrow6x+24x+3x=15+6+7\)
\(\Leftrightarrow33x=28\)
\(\Leftrightarrow x=\dfrac{28}{33}\)
\(\left(3\right)\) \(\left(1-3x\right)-2\left(3x-6\right)=-4x-5\)
\(\Leftrightarrow1-3x-6x+12=-4x-5\)
\(\Leftrightarrow-3x-6x+4x=-1-12-5\)
\(\Leftrightarrow-5x=-18\)
\(\Leftrightarrow x=\dfrac{18}{5}\)
\(\left(4\right)\) \(x\left(4x-3\right)-2x\left(2x-1\right)=5x-7\)
\(\Leftrightarrow4x^2-3x-4x^2+2x=5x-7\)
\(\Leftrightarrow-x-5x=-7\)
\(\Leftrightarrow-6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\)
\(\left(5\right)\) \(3x\left(2x-1\right)-6x\left(x+2\right)=-3x+4\)
\(\Leftrightarrow6x^2-3x-6x^2-12x=-3x+4\)
\(\Leftrightarrow-15x+3x=4\)
\(\Leftrightarrow-12x=4\)
\(\Leftrightarrow x=-\dfrac{1}{3}\)
tim x biet
a/(3x-5)(2x-1)-(x+2)(6x-1)=0
b/ (3x-5)(3x+2)-(3x-1)2=-5
c/(3x+2)(x-5)=3(x-1)2-2
d/ (x+1)2/3 - (x-2)2/2 = 2x+1/2 (x-3)2/6
g/49x2=(3x+2)2
h/(3x-4)2-(2x-2)2-3(x-2)(2x-1)=0
i/ (x-2)(x2-2x+4)-x(x2+2)=15
k/ 6x2-7x-3=0
m/(x+5)(x-3)+x2-25=0
e/ x3+3x2=4x+12
f/ (6x+7)2(3x+4)(x+1)=6
Giải các phương trình sau
a)\(x^3+8x=5x^2+4\)
b) \(x^3+3x^2=x+6 \)
c)\(2x+3\sqrt{x}=1\)
4) \(x^4+4x^2+1=3x^3+3x\)
5)\((12x-1)(6x-1)(4x-1)(3x-1)=330\)
a: \(x^3+8x=5x^2+4\)
=>\(x^3-5x^2+8x-4=0\)
=>\(x^3-x^2-4x^2+4x+4x-4=0\)
=>\(x^2\left(x-1\right)-4x\left(x-1\right)+4\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^2-4x+4\right)=0\)
=>\(\left(x-1\right)\left(x-2\right)^2=0\)
=>\(\left[{}\begin{matrix}x-1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
2: \(x^3+3x^2=x+6\)
=>\(x^3+3x^2-x-6=0\)
=>\(x^3+2x^2+x^2+2x-3x-6=0\)
=>\(x^2\cdot\left(x+2\right)+x\left(x+2\right)-3\left(x+2\right)=0\)
=>\(\left(x+2\right)\left(x^2+x-3\right)=0\)
=>\(\left[{}\begin{matrix}x+2=0\\x^2+x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1+\sqrt{13}}{2}\\x=\dfrac{-1-\sqrt{13}}{2}\end{matrix}\right.\)
3: ĐKXĐ: x>=0
\(2x+3\sqrt{x}=1\)
=>\(2x+3\sqrt{x}-1=0\)
=>\(x+\dfrac{3}{2}\sqrt{x}-\dfrac{1}{2}=0\)
=>\(\left(\sqrt{x}\right)^2+2\cdot\sqrt{x}\cdot\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{17}{16}=0\)
=>\(\left(\sqrt{x}+\dfrac{3}{4}\right)^2=\dfrac{17}{16}\)
=>\(\left[{}\begin{matrix}\sqrt{x}+\dfrac{3}{4}=-\dfrac{\sqrt{17}}{4}\\\sqrt{x}+\dfrac{3}{4}=\dfrac{\sqrt{17}}{4}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=\dfrac{\sqrt{17}-3}{4}\left(nhận\right)\\\sqrt{x}=\dfrac{-\sqrt{17}-3}{4}\left(loại\right)\end{matrix}\right.\)
=>\(x=\dfrac{13-3\sqrt{17}}{8}\left(nhận\right)\)
4: \(x^4+4x^2+1=3x^3+3x\)
=>\(x^4-3x^3+4x^2-3x+1=0\)
=>\(x^4-x^3-2x^3+2x^2+2x^2-2x-x+1=0\)
=>\(x^3\left(x-1\right)-2x^2\left(x-1\right)+2x\left(x-1\right)-\left(x-1\right)=0\)
=>\(\left(x-1\right)\left(x^3-2x^2+2x-1\right)=0\)
=>\(\left(x-1\right)\left(x^3-x^2-x^2+x+x-1\right)=0\)
=>\(\left(x-1\right)^2\cdot\left(x^2-x+1\right)=0\)
=>(x-1)^2=0
=>x-1=0
=>x=1
a.
\(x^3+8x=5x^2+4\)
\(\Leftrightarrow x^3-5x^2+8x-4=0\)
\(\Leftrightarrow\left(x^3-4x^2+4x\right)-\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow x\left(x-2\right)^2-\left(x-2\right)^2=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
b.
\(x^3+3x^2-x-6=0\)
\(\Leftrightarrow\left(x^3+x^2-3x\right)+\left(2x^2+2x-6\right)=0\)
\(\Leftrightarrow x\left(x^2+x-3\right)+2\left(x^2+x-3\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x^2+x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{-1\pm\sqrt{13}}{2}\end{matrix}\right.\)
c.
\(2x+3\sqrt{x}+1=0\)
ĐKXĐ: \(x\ge0\)
Do \(x\ge0\Rightarrow\left\{{}\begin{matrix}2x\ge0\\3\sqrt{x}\ge0\end{matrix}\right.\)
\(\Rightarrow2x+3\sqrt{x}+1>0\)
Pt đã cho vô nghiệm
d.
\(x^4+4x^2+1=3x^3+3x\)
\(\Leftrightarrow x^4-3x^3+4x^2-3x+1=0\)
- Với \(x=0\) ko phải nghiệm
- Với \(x\ne0\) chia cả 2 vế của pt cho \(x^2\)
\(\Rightarrow x^2-3x+4-\dfrac{3}{x}+\dfrac{1}{x^2}=0\)
\(\Leftrightarrow\left(x^2+\dfrac{1}{x^2}+2\right)-3\left(x+\dfrac{1}{x}\right)+2=0\)
\(\Leftrightarrow\left(x+\dfrac{1}{x}\right)^2-3\left(x+\dfrac{1}{x}\right)+2=0\)
Đặt \(x+\dfrac{1}{x}=t\)
\(\Rightarrow t^2-3t+2=0\Rightarrow\left[{}\begin{matrix}t=1\\t=2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=2\\x+\dfrac{1}{x}=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x^2-x+1=0\left(vn\right)\\x^2-2x+1=0\end{matrix}\right.\)
\(\Rightarrow x=1\)
tim x biet:
( x^2-4x+16 )( x+4 )-x ( x+1 )(x+2)+3x^2=0
(8x+2)(1-3x)+(6x-1)(4x-10)=-50
( x2 - 4x + 16 )( x + 4 ) - x( x + 1 )( x + 2 ) + 3x2 = 0
<=> x3 + 43 - x( x2 + 3x + 2 ) + 3x2 = 0
<=> x3 + 64 - x3 - 3x2 - 2x + 3x2 = 0
<=> 64 - 2x = 0
<=> 2x = 64
<=> x = 32
( 8x + 2 )( 1 - 3x ) + ( 6x - 1 )( 4x - 10 ) = -50
<=> 2x - 24x2 + 2 + 24x2 - 64x + 10 = -50
<=> -62x + 12 = -50
<=> -62x = -62
<=> x = 1
Tìm x biết
1. 2(5x-8)-3(4x-5)=4(3x-4)+11
2. (2x+1)2-(4x-1).(x-3)-15=0
3. (3x-1).(2x-7)-(1-3x).(6x-5)=0
1) \(\Rightarrow10x-16-12x+15=12x-16+11\)
\(\Rightarrow14x=4\Rightarrow x=\dfrac{2}{7}\)
2) \(\Rightarrow4x^2+4x+1-4x^2+13x-3-15=0\)
\(\Rightarrow17x=17\Rightarrow x=1\)
3) \(\Rightarrow\left(3x-1\right)\left(2x-7+6x-5\right)=0\)
\(\Rightarrow\left(2x-3\right)\left(3x-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{3}\end{matrix}\right.\)
2: Ta có: \(\left(2x+1\right)^2-\left(4x-1\right)\left(x-3\right)-15=0\)
\(\Leftrightarrow4x^2+4x+1-4x^2+12x+x-3-15=0\)
\(\Leftrightarrow17x=17\)
hay x=1
bai1.tim x biet:
a,(x+2).(x+3)-(x-2).(x+5)=0
b,(2x+3).(x-4)+(x-5).(x-2)=(3x-5).(x-4)
c,(8x-3).(3x+2)-(4x+7).(x+4)=(2x+1).(5x-1)=33
,(8x-3).(3x+2)-(4x+7).(x+4)=(2x+1).(5x-1)-33 đúng không bạn
Tìm x biết
1.(x+3)2-(x+2).(x-2)=4x+17
2.(2x+1)2-(4x-1).(x-3)-15=0
3.(2x+3).(x-1)+(2x-3).(1-x)=0
4.2(5x-8)-3(4x-5)=4(3x-4)+11
5.(3x-1).(2x-7)-(1-3x).(6x-5)=0
1: Ta có: \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=4x+17\)
\(\Leftrightarrow x^2+6x+9-x^2+4-4x=17\)
\(\Leftrightarrow x=2\)
3: Ta có: \(\left(2x+3\right)\left(x-1\right)+\left(2x-3\right)\left(1-x\right)=0\)
\(\Leftrightarrow2x^2-2x+3x-3+2x-2x^2-3+3x=0\)
\(\Leftrightarrow6x=6\)
hay x=1
Bài 1. Thực hiện các phép nhân a) 4x(3x – 1) – 2(3x + 1) – (x + 3)
b) 3x(4x – 3) – (2x – 1)(6x + 5)
c) 4x(3x2 – x) – (2x + 3)(6x2 – 3x + 1)
d) (x – 2)(x + 2)(x2 + 4)
\(a,=12x^2-4x-6x-2-x-3=12x^2-11x-5\\ b,=12x^2-9x-12x^2-4x+5=5-13x\\ c,=12x^3-4x^2-12x^3-12x^2+7x-3=-16x^2+7x-3\\ d,=\left(x^2-4\right)\left(x^2+4\right)=x^4-16\)