(x^2 9)^2 8x(x^2 9) 12x^2
Viết theo mẫu : A^2+2ab +B=(A+B)^2
a) x^2 + 2x +1
b)x^2 + 8x+16
c) x^2 +6x +9
d)4x^2+4x+1
e) 36+ x^2 - 12x
f) 4x^2 + 12x +9
g) x^4 +81 +18x^2
h) 9x^2 + 30xy + 25y^2
a) \(x^2+2x+1=\left(x+1\right)^2\)
b) \(x^2+8x+16=\left(x+4\right)^2\)
c) \(x^2+6x+9=\left(x+3\right)^2\)
d) \(4x^2+4x+1=\left(2x+1\right)^2\)
e) \(36+x^2-12x=x^2-12x+36=\left(x-6\right)^2\)
f) \(4x^2+12x+9=\left(2x+3\right)^2\)
g) \(x^4+81+18x^2=x^4+18x^2+81=\left(x^2+9\right)^2\)
h) \(9x^2+30xy+25y^2=\left(3x+5y\right)^2\)
a, \(x^2\) + 2\(x\) + 1 = (\(x\) + 1)2
b, \(x^2\) + 8\(x\) + 16 = (\(x\) + 4)2
c, \(x^2\) + 6\(x\) + 9 = (\(x\) + 3)2
d, 4\(x^2\) + 4\(x\) + 1 = (2\(x\) + 1)2
giải pt\(\sqrt{16-8x+x^2}=4-x\)
\(\sqrt{4x^2-12x+9}=2x-3\)
\(1.\sqrt{16-8x+x^2}=4-x\)
\(\sqrt{\left(4-x\right)^2}=4-x\)
\(4-x-4+x=0\)
= 0 phương trình vô nghiệm.
\(2.\sqrt{4x^2-12x+9}=2x-3\)
\(\)\(\sqrt{\left(2x-3\right)^2}=2x-3\)
\(2x-3-2x+3=0\)
= 0 phương trình vô nghiệm.
a: Ta có: \(\sqrt{16-8x+x^2}=4-x\)
\(\Leftrightarrow\left|4-x\right|=4-x\)
hay \(x\le4\)
b: Ta có: \(\sqrt{4x^2-12x+9}=2x-3\)
\(\Leftrightarrow\left|2x-3\right|=2x-3\)
hay \(x\ge\dfrac{3}{2}\)
a/ \(\sqrt{16-8x+x^2}=4-x\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\\sqrt{\left(4-x\right)^2}=4-x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\le4\\\left|4-x\right|=4-x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\le4\\\left[{}\begin{matrix}4-x=4-x\left(loại\right)\\4-x=x-4\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=4\)
Vậy...
b/ \(\sqrt{4x^2-12x+9}=2x-3\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\sqrt{\left(2x-3\right)^2}=2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\\left[{}\begin{matrix}2x-3=2x-3\left(loại\right)\\2x-3=3-2x\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy...
tìm x:
(x+8)^2=121
x^2+8x+16=0
4x^2-12x=-9
Giải:
a) \(\left(x+8\right)^2=121\)
\(\Leftrightarrow\left[{}\begin{matrix}x+8=-11\\x+8=11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-19\\x=3\end{matrix}\right.\)
Vậy ...
b) \(x^2+8x+16=0\)
\(\Leftrightarrow x^2+2.4.x+4^2=0\)
\(\Leftrightarrow\left(x+4\right)^2=0\)
\(\Leftrightarrow x+4=0\)
\(\Leftrightarrow x=-4\)
Vậy ...
c) \(4x^2-12x=-9\)
\(\Leftrightarrow4x^2-12x+9=0\)
\(\Leftrightarrow\left(2x\right)^2-2.2x.3+3^2=0\)
\(\Leftrightarrow\left(2x-3\right)^2=0\)
\(\Leftrightarrow2x-3=0\)
\(\Leftrightarrow x=\dfrac{3}{2}\)
Vậy ...
a, (x+8)2=121
<=>\(\left[{}\begin{matrix}x+8=11\\x+8=-11\end{matrix}\right.\)
<=>\(\left[{}\begin{matrix}x=3\\x=-19\end{matrix}\right.\)
Vậy x\(\in\){3;-19}
b,x2+8x+16=0
<=>(x+4)2=0
<=> x+4=0
<=>x=-4
Vậy x=-4
c,4x2-12x=-9
<=> 4x2-12x+9=0
<=> (2x-3)2=0
<=> 2x-3=0
<=> 2x=3
<=> x=1,5
Vậy x=1,5
1.Giải các phương trình sau:
A. 1+14/(x-4)^2=-9/x-4
B.1+8x/1+2x-2x/2x-1+12x^2-9/1-4x^2=0
C.1/2x-6-3x-5/x^2-4x+3=1/2
1: \(\Leftrightarrow\left(x-4\right)^2+14=-9\left(x-4\right)\)
\(\Leftrightarrow x^2-8x+16+14+9x-36=0\)
\(\Leftrightarrow x^2+x-6=0\)
=>(x+3)(x-2)=0
=>x=-3(nhận) hoặc x=2(nhận)
2: \(\Leftrightarrow\left(8x+1\right)\left(2x-1\right)-2x\left(2x+1\right)-12x^2+9=0\)
\(\Leftrightarrow16x^2-8x+2x-1-4x^2-2x-12x^2+9=0\)
=>-8x+8=0
hay x=1(nhận)
c: \(\dfrac{1}{2\left(x-3\right)}-\dfrac{3x-5}{\left(x-3\right)\left(x-1\right)}=\dfrac{1}{2}\)
\(\Leftrightarrow x-1-2\left(3x-5\right)=\left(x-3\right)\left(x-1\right)\)
\(\Leftrightarrow x^2-4x+3=x-1-6x+10=-5x+9\)
\(\Leftrightarrow x^2+x-6=0\)
=>(x+3)(x-2)=0
=>x=-3(nhận) hoặc x=2(nhận)
Bài 1 Tìm x
a, x^3 -6x^2+12x-9=0
b,8x^3+12x^2+6x-26=0
a) \(x^3-6x^2+12x-9=0\)
\(\Leftrightarrow x^3-6x^2+12x-8-1=0\)
\(\Leftrightarrow\left(x-2\right)^3=1\)
\(\Leftrightarrow x-2=1\Leftrightarrow x=3\)
b) \(8x^3+12x^2+6x-26=0\)
\(\Leftrightarrow8x^3+12x^2+6x+1-27=0\)
\(\Leftrightarrow\left(2x+1\right)^3=27\)
\(\Leftrightarrow2x+1=3\Leftrightarrow x=1\)
Bài 1:Phân tích đa thức thành nhân tử
1)8x^3-5xyz-24y^2+15z
2)x^4-x^3-x+1
3)25x^2(x-y)-x+y
4)16x62(z^2-y^2)z^2+y^2
5)x^3+x^2y-x^2z-xyz
6)12x^5y+24x^4y^2+12x^3y^3
7)x^9+x^8-x-1
9)x^2+7x+12
10)3x^2-8x+5
11)x^2-5xy=6y^2
câu cuối mình ghi sai xíu:x62-5xy+6y^2
Bạn tách 3 - 4 câu thành 1 phần câu hỏi rồi gửi chứ dài quá nhiều người ngại trả lời lắm :(
câu 1 và câu cuối mk ghi xíu:8xy^3-5xyz-24y^2+15z và câu câu cuối là x^2-5xy+6y^2
Giải phương trình:
(1/x^2+4x+3)+(1/x^2+8x+15)+1/x^2+12x+35)=1/9
https://olm.vn/hoi-dap/detail/64195114200.html
Bn dưới trl r!!
Chúc bn hc tốt!!
.Tìm x biết:
a) 3x(x – 2) – x + 2 = 0
b) x3 – 6x2 + 12x – 8 = 0
c) 16x2 – 9(x + 1)2
d) x2 (x – 1) – 4x2 + 8x – 4 = 0
\(a,\Leftrightarrow\left(x-2\right)\left(3x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-2\right)^3=0\Leftrightarrow x-2=0\Leftrightarrow x=2\\ c,\Leftrightarrow\left(4x-3x-3\right)\left(4x+3x+3\right)=0\\ \Leftrightarrow\left(x-3\right)\left(7x+3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{7}\end{matrix}\right.\\ d,\Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
Tìm x: (4x-1)^3+(3-4x).(9+12x+16x^2)=(8x-1).(8x+1)-(3x-5)
phan tich da thuc thanh nhan tu
x^2+6x+9
10x-25-x^2
8x^3-1/8
8x^3+12x^2+6xy^2+y^3
\(a,x^2+6x+9\)
\(=\left(x+3\right)^2\)
\(b,10x-25-x^2\)
\(=-\left(x^2-10x+25\right)\)
\(=-\left(x-5\right)^2\)
\(c,8x^3-\frac{1}{8}\)
\(=8x^3-\left(\frac{1}{2}\right)^3\)
\(=\left(8x-\frac{1}{2}\right)\left(64x^2+4x+\frac{1}{4}\right)\)
\(d,8x^3+12x^2+6xy^2+y^3\)
\(=2\left(4x^3+6x^2+3xy^2+\frac{1}{2}y^3\right)\)
hok tốt!
Điệp viên 007 sai c
c, \(8x^3-\frac{1}{8}=\left(2x\right)^3-\left(\frac{1}{2}\right)^3=\left(2x-\frac{1}{2}\right)\left(4x^2+x+\frac{1}{4}\right)\)